Easy Hyperparameter Search Using Optunity

Optunity is a free software package dedicated to hyperparameter optimization. It contains various types of solvers, ranging from undirected methods to direct search, particle swarm and evolutionary optimization. The design focuses on ease of use, flexibility, code clarity and interoperability with existing software in all machine learning environments. Optunity is written in Python and contains interfaces to environments such as R and MATLAB. Optunity uses a BSD license and is freely available online at this http URL

[1]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[2]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[3]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[4]  Scott Shenker,et al.  Spark: Cluster Computing with Working Sets , 2010, HotCloud.

[5]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[6]  Ruben Martinez-Cantin,et al.  BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits , 2014, J. Mach. Learn. Res..

[7]  Marc Parizeau,et al.  DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..

[8]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[9]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[10]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[11]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[12]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[13]  Yves Deville,et al.  DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization , 2012 .

[14]  Geoffrey E. Hinton A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.

[15]  David D. Cox,et al.  Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms , 2013, SciPy.