Modeling and optimization of maximum available work for irreversible gas power cycles with temperature dependent specific heat

Abstract In classical thermodynamics, the maximum power obtained from a system is defined as exergy (availability). However, the term exergy is used for reversible cycles only; in reality, reversible cycles do not exist, and all systems are irreversible. Reversible cycles do not have such restrictions as time and dimension, and are assumed to work in an equilibrium state. The objective of this study is to obtain maximum available work for SI, CI and Brayton cycles while considering the aforementioned restrictions and assumptions. We assume that the specific heat of the working fluid varies with temperature, we define optimum compression ratios and pressure ratio in order to obtain maximum available work, and we discuss the results obtained. The design parameter most appropriate for the results obtained is presented.

[1]  L. Chen,et al.  The power and efficiency characteristics for an irreversible Otto cycle , 2003 .

[2]  A. Tsirlin,et al.  Finite-time thermodynamics: The maximal productivity of binary distillation and selection of optimal separation sequence for an ideal ternary mixture , 2014 .

[3]  Lingen Chen,et al.  Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid , 2005 .

[4]  Y. Çengel,et al.  Thermodynamics : An Engineering Approach , 1989 .

[5]  Sergio Sibilio,et al.  Recent Advances in Finite-Time Thermodynamics , 1999 .

[6]  Fengrui Sun,et al.  Finite-time thermodynamic modelling and analysis of an irreversible Otto-cycle , 2008 .

[7]  J. Burzler,et al.  Endoreversible Thermodynamics , 2006 .

[8]  Chih Wu,et al.  Work and power optimization of a finite-time Brayton cycle , 1990 .

[9]  Yasin Ust,et al.  Optimization of a regenerative gas-turbine cogeneration system based on a new exergetic performance criterion: Exergetic performance coefficient , 2007 .

[10]  Sanford Klein,et al.  An Explanation for Observed Compression Ratios in Internal Combustion Engines , 1991 .

[11]  Stanislaw Sieniutycz,et al.  Energy Optimization in Process Systems and Fuel Cells Ed. 2 , 2013 .

[12]  R. L. Kiang,et al.  Power performance of a nonisentropic Brayton cycle , 1991 .

[13]  Fengrui Sun,et al.  Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle , 2001 .

[14]  Bahri Sahin,et al.  Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics , 2004 .

[15]  V. Badescu Lost available work and entropy generation: Heat versus radiation reservoirs , 2013 .

[16]  Fengrui Sun,et al.  Optimal expansion of a heated working fluid for maximum work output with generalized radiative heat transfer law , 2007 .

[17]  Lingen Chen,et al.  Exergy efficiency optimization of a thermoacoustic engine with a complex heat transfer exponent , 2010 .

[18]  Amir Rahimi,et al.  First and second thermodynamic law analyses applied to a solar dish collector , 2014 .

[19]  Bahri Sahin,et al.  Maximum power density analysis of an irreversible Joule - Brayton engine , 1996 .

[20]  Fengrui Sun,et al.  Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible dual cycle , 2006 .

[21]  Yingru Zhao,et al.  Optimization criteria for the important parameters of an irreversible Otto heat-engine , 2006 .

[22]  Fengrui Sun,et al.  Performance of reciprocating Brayton cycle with heat transfer, friction and variable specific heats of working fluid , 2008 .

[23]  Fengrui Sun,et al.  Finite-time exergy with a finite heat reservoir and generalized radiative heat transfer law , 2010 .

[24]  Fengrui Sun,et al.  Optimal heat conductance distribution and optimal intercooling pressure ratio for power optimisation of irreversible closed intercooled regenerated Brayton cycle , 2006 .

[25]  Stanislaw Sieniutycz,et al.  Generalized Carnot problem of maximum work in finite time via Hamilton–Jacobi–Bellman theory , 1998 .

[26]  Fengrui Sun,et al.  Performance of an endoreversible Diesel cycle with variable specific heats working fluid , 2008 .

[27]  Stanislaw Sieniutycz,et al.  Hamilton-Jacobi-Bellman theory of dissipative thermal availability , 1997 .

[28]  L. Beda Thermal physics , 1994 .

[29]  Bahri Sahin,et al.  Efficiency of a Joule-Brayton engine at maximum power density , 1995 .

[30]  R. Stephen Berry,et al.  Power and efficiency limits for internal combustion engines via methods of finite‐time thermodynamics , 1993 .

[31]  Jincan Chen,et al.  An irreversible heat engine model including three typical thermodynamic cycles and their optimum performance analysis , 2007 .

[32]  Yasin Ust,et al.  Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion , 2007 .

[33]  Santiago Velasco,et al.  Optimum performance of a regenerative Brayton thermal cycle , 1997 .

[34]  Lingen Chen,et al.  Performance comparison of an endoreversible closed variable temperature heat reservoir Brayton cycle under maximum power density and maximum power conditions , 2002 .

[35]  Bahri Sahin,et al.  A comparative performance analysis of irreversible regenerative reheating Joule-Brayton engines under maximum power density and maximum power conditions , 1998 .

[36]  Stanislaw Sieniutycz,et al.  Finite time generalization of thermal exergy , 1998 .

[37]  P. L. Curto-Risso,et al.  Optimizing the operation of a spark ignition engine: Simulation and theoretical tools , 2009 .

[38]  R. Stephen Berry,et al.  Finite‐time thermodynamics: Exergy and optimization of time‐constrained processes , 1994 .

[39]  Stanislaw Sieniutycz,et al.  Carnot problem of maximum work from a finite resource interacting with environment in a finite time , 1999 .

[40]  Bihong Lin,et al.  Performance analysis and parametric optimum design of an irreversible Diesel heat engine , 2006 .

[41]  Lingen Chen,et al.  Exergetic efficiency optimization for real regenerated air refrigerators , 2011 .

[42]  Yasin Ust,et al.  The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs , 2006 .

[43]  Lingen Chen,et al.  Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems , 1999 .

[44]  Bjarne Andresen,et al.  Thermodynamics for Processes in Finite Time , 1984 .

[45]  B. Andresen Current trends in finite-time thermodynamics. , 2011, Angewandte Chemie.

[46]  Fengrui Sun,et al.  Performance of Diesel cycle with heat transfer, friction and variable specific heats of working fluid , 2007 .

[47]  Fengrui Sun,et al.  Theoretical analysis of the performance of a regenerative closed Brayton cycle with internal irreversibilities , 1997 .

[48]  L. Chen,et al.  Finite-time thermodynamic modelling and analysis of an irreversible diesel cycle , 2008 .

[49]  Lingen Chen,et al.  Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle , 2009, Math. Comput. Model..

[50]  Cha'o-Kuang Chen,et al.  Power optimization of an endoreversible regenerative Brayton cycle , 1996 .

[51]  Cha'o-Kuang Chen,et al.  Power Optimization of an Irreversible Brayton Heat Engine , 1997 .

[52]  Yasin Ust,et al.  Performance optimisation of irreversible cogeneration systems based on a new exergetic performance criterion: exergy density , 2009 .

[53]  Fengrui Sun,et al.  Ecological optimisation of an irreversible-closed ICR gas turbine cycle , 2011 .

[54]  H. H. Erdem,et al.  An analysis of SOFC/GT CHP system based on exergetic performance criteria , 2008 .

[55]  Hasan Yamik,et al.  Limits and Optimization of Power Input or Output of Actual Thermal Cycles , 2013, Entropy.

[56]  Adnan Parlak,et al.  Comparative performance analysis of irreversible Dual and Diesel cycles under maximum power conditions , 2005 .

[57]  Ali Volkan Akkaya,et al.  Analysis of a vapour compression refrigeration system via exergetic performance coefficient criterion , 2011 .

[58]  Hasan Hüseyin Erdem,et al.  Exergetic performance coefficient analysis of a simple fuel cell system , 2007 .

[59]  Siqin Chang,et al.  Optimal motion trajectory for the four-stroke free-piston engine with irreversible Miller cycle via a Gauss pseudospectral method , 2014 .

[60]  A. Al-Sarkhi,et al.  Effects of friction and temperature-dependent specific-heat of the working fluid on the performance of a Diesel-engine , 2006 .

[61]  Bjarne Andresen,et al.  Availability for finite-time processes. General theory and a model , 1983 .

[62]  Fernando Angulo-Brown,et al.  A non-endoreversible Otto cycle model: improving power output and efficiency , 1996 .

[63]  Fengrui Sun,et al.  The effects of variable specific heats of working fluid on the performance of an irreversible Otto cycle , 2005 .

[64]  P. L. Curto-Risso,et al.  Theoretical and simulated models for an irreversible Otto cycle , 2008 .