Herschel observations of a z 2 stellar mass selected galaxy sample drawn from the GOODS NICMOS Survey

We present a study of the far-infrared (IR) properties of a stellar mass selected sample of 1.5 \textless z \textless 3 galaxies with log?(M*/M?) \textgreater 9.5 drawn from the Great Observatories Origins Deep Survey (GOODS) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Survey (GNS), the deepest H-band Hubble Space Telescope survey of its type prior to the installation of Wide Field Camera 3 (WFC3). We use far-IR and submm data from the Photoconductor Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) instruments on-board Herschel, taken from the PACS Evolutionary Probe (PEP) and Herschel Multi-Tiered Extragalactic Survey (HerMES) key projects, respectively. We find a total of 22 GNS galaxies, with median log?(M*/M?) = 10.8 and z = 2.0, associated with 250?mu m sources detected with signal-to-noise ratio (SNR) \textgreater 3. We derive mean total IR luminosity log?LIR(L?) = 12.36 +/- 0.05 and corresponding star formation rate (SFR)IR + UV = (280 +/- 40)?M??yr-1 for these objects, and find them to have mean dust temperature Tdust similar to 35?K. We find that the SFR derived from the far-IR photometry combined with ultraviolet (UV)-based estimates of unobscured SFR for these galaxies is on average more than a factor of 2 higher than the SFR derived from extinction-corrected UV emission alone, although we note that the IR-based estimate is subject to substantial Malmquist bias. To mitigate the effect of this bias and extend our study to fainter fluxes, we perform a stacking analysis to measure the mean SFR in bins of stellar mass. We obtain detections at the 24s level at SPIRE wavelengths for samples with log?(M*/M?) \textgreater 10. In contrast to the Herschel detected GNS galaxies, we find that estimates of SFRIR + UV for the stacked samples are comparable to those derived from extinction-corrected UV emission, although the uncertainties are large. We find evidence for an increasing fraction of dust obscured star formation with stellar mass, finding SFR IR / SFR UV ?M*0.7 +/- 0.2, which is likely a consequence of the massmetallicity relation.

[1]  D. L. Clements,et al.  HerMES: deep number counts at 250 μm, 350 μm and 500 μm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background , 2012, 1203.1925.

[2]  A. Hopkins,et al.  Herschel -ATLAS/GAMA: a census of dust in optically selected galaxies from stacking at submillimetre wavelengths , 2012, 1201.1916.

[3]  A. Cimatti,et al.  THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES , 2011, 1106.1186.

[4]  E. Gawiser,et al.  PANCHROMATIC ESTIMATION OF STAR FORMATION RATES IN BzK GALAXIES AT 1 < z < 3 , 2010, The Astrophysical Journal.

[5]  D. Elbaz,et al.  The Herschel Multi-tiered Extragalactic Survey: SPIRE-mm photometric redshifts , 2011, 1109.2887.

[6]  D. Elbaz,et al.  GOODS-Herschel: a population of 24 μm dropout sources at z < 2 , 2011, 1108.0838.

[7]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[8]  C. Conselice,et al.  The relationship between star formation rates, local density and stellar mass up to z ~ 3 in the GOODS NICMOS Survey , 2011, 1108.0402.

[9]  D. Elbaz,et al.  GOODS-HERSCHEL MEASUREMENTS OF THE DUST ATTENUATION OF TYPICAL STAR-FORMING GALAXIES AT HIGH REDSHIFT: OBSERVATIONS OF ULTRAVIOLET-SELECTED GALAXIES AT z ∼ 2 , 2011, 1107.2653.

[10]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[11]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[12]  B. Magnelli,et al.  PACS Evolutionary Probe (PEP) – a Herschel key program , 2011, 1106.3285.

[13]  C. Conselice,et al.  Star formation in a stellar mass-selected sample of galaxies to z= 3 from the GOODS-NICMOS Survey , 2011, 1106.2656.

[14]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[15]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[16]  S. Bamford,et al.  GAMA/H-ATLAS: the ultraviolet spectral slope and obscuration in galaxies , 2011, 1103.3080.

[17]  M. Dickinson,et al.  AN ACCOUNTING OF THE DUST-OBSCURED STAR FORMATION AND ACCRETION HISTORIES OVER THE LAST ∼11 BILLION YEARS , 2011, 1102.3920.

[18]  CEA-Saclay,et al.  Defining the intrinsic AGN infrared spectral energy distribution and measuring its contribution to the infrared output of composite galaxies , 2011, 1102.1425.

[19]  C. Conselice,et al.  A deep probe of the galaxy stellar mass functions at z ∼ 1―3 with the GOODS NICMOS Survey , 2011, 1101.2867.

[20]  D. Elbaz,et al.  Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.

[21]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[22]  S. Maddox,et al.  Herschel-ATLAS: rapid evolution of dust in galaxies over the last 5 billion years , 2010, 1012.5186.

[23]  Jing Wang,et al.  DUST ATTENUATION IN UV-SELECTED STARBURSTS AT HIGH REDSHIFT AND THEIR LOCAL COUNTERPARTS: IMPLICATIONS FOR THE COSMIC STAR FORMATION RATE DENSITY , 2010, 1011.6098.

[24]  C. Conselice,et al.  Galaxy properties in different environments up to z∼ 3 in the GOODS NICMOS Survey , 2010, 1011.4846.

[25]  Douglas Scott,et al.  The Hubble Space Telescope GOODS NICMOS Survey: Overview and the Evolution of Massive Galaxies at 1.5 < z < 3 , 2010, 1010.1164.

[26]  Guilaine Lagache,et al.  Modeling the evolution of infrared galaxies: a parametric backward evolution model , 2010, 1010.1150.

[27]  D. Elbaz,et al.  HerMES: SPIRE detection of high-redshift massive compact galaxies in GOODS-N field , 2010, 1010.0673.

[28]  N. Seymour,et al.  Selection of ULIRGs in infrared and submm surveys , 2010, 1009.3778.

[29]  I. P'erez-Fournon,et al.  Herschel-SPIRE, far-infrared properties of millimetre-bright and -faint radio galaxies , 2010, 1009.3001.

[30]  C. Conselice,et al.  Origins of the extragalactic background at 1 mm from a combined analysis of the AzTEC and MAMBO data in GOODS-N , 2010, 1009.2503.

[31]  D. Elbaz,et al.  The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images , 2010, 1009.1658.

[32]  L.Wang,et al.  Evolution of dust temperature of galaxies through cosmic time as seen by Herschel , 2010, 1009.1058.

[33]  C. Conselice,et al.  Measuring star formation in high‐z massive galaxies: a mid‐infrared to submillimetre study of the GOODS NICMOS Survey sample , 2010, 1008.4359.

[34]  C. Conselice,et al.  On the co-evolution of supermassive black holes and their host galaxies since z= 3 , 2010, 1008.2162.

[35]  A. Cimatti,et al.  The star-formation rates of 1.5 < z < 2.5 massive galaxies , 2010 .

[36]  I. Smail,et al.  THE STELLAR MASS CONTENT OF SUBMILLIMETER-SELECTED GALAXIES , 2010, 1006.0238.

[37]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[38]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[39]  M.Vaccari,et al.  Herschel unveils a puzzling uniformity of distant dusty galaxies , 2010, 1005.2859.

[40]  D. Elbaz,et al.  HerMES: Far infrared properties of known AGN in the HerMES fields , 2010, 1005.2192.

[41]  D. Elbaz,et al.  HerMES: The SPIRE confusion limit , 2010, 1005.2207.

[42]  D. Elbaz,et al.  HerMES: SPIRE galaxy number counts at 250, 350, and 500 μm , 2010, 1005.2184.

[43]  S. Bamford,et al.  Herschel-ATLAS: Dust Temperature and Redshift Distribution of SPIRE and PACS Detected Sources Using Submillimetre Colours , 2010, 1005.2412.

[44]  D. Elbaz,et al.  A MULTI-WAVELENGTH VIEW OF THE STAR FORMATION ACTIVITY AT z ∼ 3 , 2010, 1003.5773.

[45]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[46]  D. Padgett,et al.  Specific star formation and the relation to stellar mass from 0 < z < 2 as seen in the far-infrared at 70 and 160 μm , 2010, 1003.2446.

[47]  A. Georgakakis,et al.  The central energy source of 70 μm-selected galaxies: starburst or AGN? , 2009, 0912.3038.

[48]  E. Gawiser,et al.  A SIMULTANEOUS STACKING AND DEBLENDING ALGORITHM FOR ASTRONOMICAL IMAGES , 2009, 0911.1592.

[49]  G. Magdis,et al.  On the stellar masses of IRAC detected Lyman Break Galaxies at z∼ 3 , 2009, 0909.3950.

[50]  D. Clements,et al.  The submillimetre properties of ultraluminous infrared galaxies , 2009, 0911.3593.

[51]  H. Rix,et al.  THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2009, 0910.2821.

[52]  V. Buat,et al.  Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.

[53]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[54]  G. Illingworth,et al.  THE HUBBLE SEQUENCE BEYOND z = 2 FOR MASSIVE GALAXIES: CONTRASTING LARGE STAR-FORMING AND COMPACT QUIESCENT GALAXIES , 2009, 0909.0260.

[55]  A. Cimatti,et al.  GMASS ultradeep spectroscopy of galaxies at z ~ 2 - V. Witnessing the assembly at z = 1.6 of a galaxy cluster , 2009, 0906.4489.

[56]  M. Halpern,et al.  An AzTEC 1.1 mm survey of the GOODS‐N field – II. Multiwavelength identifications and redshift distribution , 2009, 0906.4561.

[57]  D. Thompson,et al.  STAR FORMATION AND DUST OBSCURATION AT z ≈ 2: GALAXIES AT THE DAWN OF DOWNSIZING , 2009, 0905.1674.

[58]  B. Magnelli,et al.  The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared , 2009, 0901.1543.

[59]  M. Dickinson,et al.  BALANCING THE ENERGY BUDGET BETWEEN STAR FORMATION AND ACTIVE GALACTIC NUCLEI IN HIGH-REDSHIFT INFRARED LUMINOUS GALAXIES , 2008, 0812.2927.

[60]  L. Cowie,et al.  A Highly Complete Spectroscopic Survey of the GOODS-N Field , 2008, 0812.2481.

[61]  S. Wuyts,et al.  FIREWORKS U38-to-24 μm Photometry of the GOODS Chandra Deep Field-South: Multiwavelength Catalog and Total Infrared Properties of Distant Ks-selected Galaxies , 2008 .

[62]  I. Smail,et al.  THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS , 2008, 0806.3968.

[63]  Duncan Farrah,et al.  Photometric redshifts in the SWIRE Survey , 2008, 0802.1890.

[64]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[65]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[66]  NOAO,et al.  Spitzer Mid- to Far-Infrared Flux Densities of Distant Galaxies , 2007, 0706.2164.

[67]  Mario Schweitzer,et al.  Spitzer Quasar and ULIRG Evolution Study (QUEST). II. The Spectral Energy Distributions of Palomar-Green Quasars , 2007, 0706.0818.

[68]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[69]  G. Rieke,et al.  IR Observations of MS 1054–03: Star Formation and Its Evolution in Rich Galaxy Clusters , 2007, 0704.0953.

[70]  350 μm Observations of Ultraluminous Infrared Galaxies at Intermediate Redshifts , 2007, astro-ph/0702463.

[71]  G. Helou,et al.  The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.

[72]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[73]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[74]  Ssc,et al.  Spitzer Observations of Massive, Red Galaxies at High Redshift , 2005, astro-ph/0511289.

[75]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[76]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[77]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[78]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[79]  S. M. Fall,et al.  High-Redshift Extremely Red Objects in the Hubble Space Telescope Ultra Deep Field Revealed by the GOODS Infrared Array Camera Observations , 2004, astro-ph/0408070.

[80]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[81]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[82]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[83]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs , 2003, astro-ph/0304392.

[84]  L. Dunne,et al.  A Census of Metals at High and Low Redshift and the Connection Between Submillimetre Sources and Spheroid Formation , 2002, astro-ph/0210260.

[85]  Ralf Bender,et al.  The mass of galaxies at low and high redshift : proceedings of the European Southern Observatory and Universitäts-Sternwarte München workshop held in Venice, Italy, 24-26 October 2001 , 2003 .

[86]  S. Chapman,et al.  Submillimetre and far-infrared spectral energy distributions of galaxies: the luminosity-temperature relation and consequences for photometric redshifts , 2002, astro-ph/0209450.

[87]  Mark Dickinson,et al.  The Great Observatories Origins Deep Survey , 2002, astro-ph/0204213.

[88]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[89]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[90]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[91]  D. Clements,et al.  The SCUBA Local Universe Galaxy Survey — I. First measurements of the submillimetre luminosity and dust mass functions , 2000, astro-ph/0002234.

[92]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[93]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[94]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[95]  E. Salpeter The Luminosity function and stellar evolution , 1955 .