Infrared studies of interaction between metal ions and Ca2+‐binding proteins Marker bands for identifying the types of coordination of the side‐chain COO− groups to metal ions in pike parvalbumin (pI = 4.10)

[1]  D. Lin-Vien The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules , 1991 .

[2]  B. Tinant,et al.  Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. , 1991, Journal of molecular biology.

[3]  G. Kleywegt,et al.  Homonuclear three-dimensional proton NMR spectroscopy of pike parvalbumin. Comparison of short- and medium-range NOEs from 2D and 3D NMR , 1990 .

[4]  B. Edwards,et al.  Refined crystal structure of calcium-liganded carp parvalbumin 4.25 at 1.5-A resolution. , 1990, Biochemistry.

[5]  A. Padilla,et al.  Two-dimensional 1H nuclear magnetic resonance study of pike pI 5.0 parvalbumin (Esox lucius). Sequential resonance assignments and folding of the polypeptide chain. , 1988, Journal of molecular biology.

[6]  R. Huber,et al.  Crystal structure determination and refinement of pike 4.10 parvalbumin (minor component from Esox lucius). , 1988, Journal of molecular biology.

[7]  J. Cox,et al.  Interactive properties of calmodulin. , 1988, The Biochemical journal.

[8]  P. Charlier,et al.  Crystallization and structure at 3.2 Å resolution of a terbium parvalbumin , 1985 .

[9]  R. Norman Jones,et al.  Some Observations on the Resolution Enhancement of Spectral Data by the Method of Self-Deconvolution , 1983 .

[10]  C. Heizmann,et al.  Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Cheung,et al.  Fluorescence energy transfer studies of skeletal troponin C proximity between methionine-25 and cysteine-98. , 1982, Biochemistry.

[12]  Glen B. Deacon,et al.  Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination , 1980 .

[13]  E. Fischer,et al.  A new solid-phase chelator with high affinity and selectivity for calcium: parvalbumin-polyacrylamide. , 1977, Analytical biochemistry.

[14]  R. Kretsinger,et al.  Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. , 1976, Journal of molecular biology.

[15]  R. Kretsinger,et al.  Carp muscle calcium-binding protein. II. Structure determination and general description. , 1973, The Journal of biological chemistry.

[16]  J. Demaille,et al.  Muscular parvalbumins: preparative and analytical methods of general applicability. , 1971, Biochimica et biophysica acta.

[17]  T. Theophanides,et al.  Fifth International Conference on the Spectroscopy of Biological Molecules , 1993, Springer Netherlands.

[18]  F. Goñi,et al.  Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. , 1993, Progress in biophysics and molecular biology.

[19]  W. G. Fateley,et al.  Compounds Containing the Carbonyl Group , 1991 .

[20]  H. Mantsch,et al.  New insight into protein secondary structure from resolution-enhanced infrared spectra. , 1988, Biochimica et biophysica acta.

[21]  S. Ebashi,et al.  Regulatory and cytoskeletal proteins of vertebrate skeletal muscle. , 1986, Advances in protein chemistry.

[22]  J. Cox,et al.  Chapter 8 – Parvalbumins and Other Soluble High-Affinity Calcium-Binding Proteins from Muscle , 1982 .

[23]  A. Means,et al.  Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. , 1982, Physiological reviews.

[24]  K. Yagi,et al.  Structure and Ca++-Dependent Conformational Change of Calmodulin , 1982 .