Abrupt Plasmonic Activation of Photoionization Rates in Quantum Dot Solids

We study emission of thin film quantum dot solids as a function of intensity of an illuminating laser field when they are deposited on substrates containing gold nanoparticles. Our results show that at a given intensity of this laser the plasmonically enhanced emission of such solids starts to decline abruptly, making them inefficient emitters. We show that such a process is caused by sudden activation of photoionization processes in such structures. For this, we demonstrate how the combined effects of the heat generated by the metallic nanoparticles and plasmons lead to the collapse of the electrostatic barrier (Coulomb blockage) responsible for suppression of such processes in quantum dot solids. The results highlight the strong dependency of plasmonic emission enhancement of such solids on the exciting light source intensity and demonstrate the limits where the impacts of plasmonic field enhancement can be harvested.

[1]  Steven R. Cordero,et al.  Photo-activated luminescence of CdSe quantum dot monolayers , 2000 .

[2]  A. Govorov,et al.  Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. , 2007, Nano letters.

[3]  M. Bawendi,et al.  Surface-enhanced emission from single semiconductor nanocrystals. , 2002, Physical review letters.

[4]  Yen-Cheng Lu,et al.  Localized surface plasmon-induced emission enhancement of a green light-emitting diode , 2008, Nanotechnology.

[5]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[6]  Nicholas A. Kotov,et al.  Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles , 2007 .

[7]  A. Mews,et al.  Fluorescence enhancement, blinking suppression, and gray states of individual semiconductor nanocrystals close to gold nanoparticles. , 2010, Nano letters.

[8]  Wei Zhang,et al.  Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.

[9]  K. Mochalov,et al.  Interaction of CdSe/ZnS core-shell semiconductor nanocrystals in solid thin films , 2006 .

[10]  W. Russ Algar,et al.  The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics , 2009 .

[11]  Garnett W. Bryant,et al.  Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies , 2006 .

[12]  Min Xiao,et al.  Photo-oxidation-enhanced coupling in densely packed CdSe quantum-dot films , 2003 .

[13]  Horst Weller,et al.  Interplay between Auger and ionization processes in nanocrystal quantum dots. , 2005, The journal of physical chemistry. B.

[14]  Xiaogang Peng,et al.  Photoactivated CdSe Nanocrystals as Nanosensors for Gases , 2003 .

[15]  Y. Kanemitsu,et al.  Photoluminescence enhancement and quenching of single CdSe∕ZnS nanocrystals on metal surfaces dominated by plasmon resonant energy transfer , 2008 .

[16]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[17]  Shinya Maenosono Modeling photoinduced fluorescence enhancement in semiconductor nanocrystal arrays , 2003 .

[18]  N. Hoa,et al.  A high-performance triode-type carbon nanotube field emitter for mass production , 2007 .

[19]  Rajesh R. Naik,et al.  Optical Characterization of Bio-assembled Hybrid Nanostructures , 2006 .

[20]  Y. Yamaguchi,et al.  Photoluminescence Enhancement of a CdSe/ZnS Nanocrystal Thin Film , 2004 .

[21]  Y. Kanemitsu,et al.  Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces , 2007 .

[22]  Sergei S. Ostapenko,et al.  Reversible and non-reversible photo-enhanced luminescence in CdSe/ZnS quantum dots , 2005 .

[23]  Roberto Cingolani,et al.  Temperature dependence of the photoluminescence properties of colloidal Cd Se ∕ Zn S core/shell quantum dots embedded in a polystyrene matrix , 2005 .

[24]  C. Evans,et al.  Surface transformation and photoinduced recovery in CdSe nanocrystals. , 2001, Physical review letters.

[25]  Cherie R. Kagan,et al.  Electronic energy transfer in CdSe quantum dot solids. , 1996, Physical review letters.

[26]  Eiji Ozaki,et al.  Nonlinear Photoluminescence Behavior in Closely Packed CdSe Nanocrystal Thin Films , 2001 .

[27]  Junichi Kimura,et al.  Photoinduced Fluorescence Enhancement in CdSe/ZnS Quantum Dot Submonolayers Sandwiched between Insulating Layers: Influence of Dot Proximity , 2004 .

[28]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[29]  Joseph M Slocik,et al.  Peptide-assembled optically responsive nanoparticle complexes. , 2007, Nano letters.