Nanoscale optical nonreciprocity with nonlinear metasurfaces

Optical nonreciprocity is manifested as a difference in transmission of light between a pair of modes for the opposite directions of excitation. Nonreciprocal optics is traditionally realized with relatively bulky components such as optical isolators based on the Faraday rotation [1,2]. This represents a roadblock to the future miniaturization and integration of optical systems requiring the development of subwavelength nonreciprocal components. Here we demonstrate nonreciprocal transmission through a half-a-micron-thick silicon metasurface hybridized with vanadium dioxide (VO2) layer. Reciprocity is broken by VO2 undergoing a phase transition from its insulating to conductive phase. The phase transition is induced all-optically by an incident light, and it is designed to occur under different conditions for the opposite directions of illumination. Resonant response of the metasurface enhances nonreciprocity. Such hybrid metasurfaces can exhibit nonreciprocity at intensities as low as 150 W/cm2. Our demonstration brings optical nonreciprocity concepts to the realm of nanoscale science.

[1]  A. Polman,et al.  Passive bias-free non-reciprocal metasurfaces based on thermally nonlinear quasi-bound states in the continuum , 2022, Nature Photonics.

[2]  T. Kippenberg,et al.  Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits , 2021, Communications Physics.

[3]  Joel K. W. Yang,et al.  Asymmetric parametric generation of images with nonlinear dielectric metasurfaces , 2021, Nature Photonics.

[4]  S. Kruk,et al.  Resonant dielectric metasurfaces in strong optical fields , 2021, APL Materials.

[5]  G. Bahl,et al.  Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting , 2021, Nature Photonics.

[6]  Y. Kivshar,et al.  Tunable Mie-Resonant Dielectric Metasurfaces Based on VO2 Phase-Transition Materials , 2021, ACS Photonics.

[7]  R. Boyd,et al.  Superscattering, Superabsorption, and Nonreciprocity in Nonlinear Antennas , 2020, ACS Photonics.

[8]  Kwang‐Hyon Kim Asymmetric Second-Harmonic Generation with High Efficiency from a Non-chiral Hybrid Bilayer Complementary Metasurface , 2020, Plasmonics.

[9]  W. T. Chen,et al.  Flat optics with dispersion-engineered metasurfaces , 2020, Nature Reviews Materials.

[10]  J. Valentine,et al.  Optical Limiting Based on Huygens Metasurfaces. , 2020, Nano letters.

[11]  C. Argyropoulos,et al.  Self-Induced Passive Nonreciprocal Transmission by Nonlinear Bifacial Dielectric Metasurfaces , 2020, 2004.06825.

[12]  Amin Arbabian,et al.  Inverse-designed non-reciprocal pulse router for chip-based LiDAR , 2020 .

[13]  Shunbin Lu,et al.  Broadband nonlinear optical response in GeSe nanoplates and its applications in all-optical diode , 2020, Nanophotonics.

[14]  D. Smirnova,et al.  Nonlocal response of Mie-resonant dielectric particles , 2020, 2001.11731.

[15]  Sergey Kruk,et al.  Subwavelength dielectric resonators for nonlinear nanophotonics , 2020, Science.

[16]  Sergei A. Tretyakov,et al.  Tutorial on Electromagnetic Nonreciprocity and its Origins , 2020, Proceedings of the IEEE.

[17]  Lei Wang,et al.  Nonlinear light generation in topological nanostructures , 2018, Nature Nanotechnology.

[18]  C. Rockstuhl,et al.  Exact Multipolar Decompositions with Applications in Nanophotonics , 2018, Advanced Optical Materials.

[19]  Alexander B. Khanikaev,et al.  Photonic Jackiw-Rebbi states in all-dielectric structures controlled by bianisotropy , 2018, Physical Review B.

[20]  A. Khanikaev,et al.  Photonic spin Hall effect mediated by bianisotropy. , 2018, Optics letters.

[21]  S. Tretyakov,et al.  Electromagnetic Nonreciprocity , 2018, Physical Review Applied.

[22]  Y. Kivshar,et al.  Transverse Scattering and Generalized Kerker Effects in All-Dielectric Mie-Resonant Metaoptics. , 2018, Physical review letters.

[23]  David S. Barth,et al.  Asymmetric Free-Space Light Transport at Nonlinear Metasurfaces. , 2018, Physical review letters.

[24]  Ping Jin,et al.  Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials , 2018, NPG Asia Materials.

[25]  Sergei A. Tretyakov,et al.  Bianisotropic metasurfaces: physics and applications , 2018, Nanophotonics.

[26]  M. Kats,et al.  Nonreciprocity in Photonic Structures with Phase-Change Components , 2018, Physical Review Applied.

[27]  Andrei Faraon,et al.  A review of dielectric optical metasurfaces for wavefront control , 2018, Nanophotonics.

[28]  Andrea Alù,et al.  Fundamental bounds on the operation of Fano nonlinear isolators , 2018 .

[29]  J. Dionne,et al.  Nonreciprocal Flat Optics with Silicon Metasurfaces. , 2018, Nano letters.

[30]  Patrick J. Roney,et al.  Limiting Optical Diodes Enabled by the Phase Transition of Vanadium Dioxide , 2018, ACS Photonics.

[31]  Abdelkrim El Amili,et al.  Nonreciprocal lasing in topological cavities of arbitrary geometries , 2017, Science.

[32]  Sergey Kruk,et al.  Functional Meta-Optics and Nanophotonics Govern by Mie Resonances , 2017, 1710.08595.

[33]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[34]  S. Tretyakov,et al.  Purely bianisotropic scatterers , 2016 .

[35]  D. W. Sheel,et al.  Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide , 2016, Light: Science & Applications.

[36]  Y. Kivshar,et al.  Invited article: Broadband highly-efficient dielectric metadevices for polarization control , 2016 .

[37]  Y. Kivshar,et al.  Three-dimensional all-dielectric photonic topological insulator , 2016, Nature Photonics.

[38]  Augustine Urbas,et al.  Multipolar interference for non-reciprocal nonlinear generation , 2015, Scientific Reports.

[39]  Zongfu Yu,et al.  Limitations of nonlinear optical isolators due to dynamic reciprocity , 2015, Nature Photonics.

[40]  Carsten Rockstuhl,et al.  Revisiting substrate-induced bianisotropy in metasurfaces , 2015 .

[41]  Cheng Zhang,et al.  High performance bianisotropic metasurfaces: asymmetric transmission of light. , 2014, Physical review letters.

[42]  Sergei A. Tretyakov,et al.  Tailoring Reflections From Thin Composite Metamirrors , 2014, IEEE Transactions on Antennas and Propagation.

[43]  A. Rao,et al.  Optical diode action from axially asymmetric nonlinearity in an all-carbon solid-state device. , 2013, Nano letters.

[44]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[45]  A. Butsch,et al.  Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre , 2011 .

[46]  P. Leiderer,et al.  Nonreciprocal switching of VO(2) thin films on microstructured surfaces. , 2010, Optics letters.

[47]  A. Tünnermann,et al.  Asymmetric transmission of linearly polarized light at optical metamaterials. , 2010, Physical review letters.

[48]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[49]  Zongfu Yu,et al.  Complete optical isolation created by indirect interband photonic transitions , 2008, OPTO.

[50]  A. Sihvola Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications , 2005 .

[51]  R. E. Raab,et al.  BOOK REVIEW: Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications , 2005 .

[52]  Kurt Busch,et al.  All-optical diode in an asymmetrically apodized Kerr nonlinear microresonator system , 2004 .

[53]  Nikolay I. Zheludev,et al.  Layered chiral metallic microstructures with inductive coupling , 2001 .

[54]  Michael Scalora,et al.  Thin-film nonlinear optical diode , 1995 .

[55]  A. D. Buckingham Polarizability and hyperpolarizability , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[56]  A. Roberts,et al.  Switchable polarization rotation of visible light using a plasmonic metasurface , 2017 .

[57]  N. A. Estep,et al.  Supplementary Information for the Paper “Magnetic-Free Non-Reciprocity and Isolation Based on Parametrically Modulated Coupled-Resonator Loops” , 2014 .

[58]  X. Yi,et al.  Phase Transition VO2 Thin Films for Optical Switches , 2004 .