Figure-ground separation by a dynamical system

This correspondence describes a novel nonlinear scheme for figure-ground separation where a nonlinear differential equation is defined at each pixel site and coupled with those at neighboring sites. The steady state solution enhances salient image structures and suppresses background noise. Experimental results on synthetic and real-world images demonstrate the efficacy of this scheme.

[1]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[2]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[3]  V. Bruce,et al.  Visual perception: Physiology, psychology and ecology, 2nd ed. , 1990 .

[4]  David W. Jacobs,et al.  Robust and Efficient Detection of Salient Convex Groups , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Narendra Ahuja,et al.  Extraction of early perceptual structure in dot patterns: Integrating region, boundary, and component gestalt , 1989, Comput. Vis. Graph. Image Process..

[6]  Kim L. Boyer,et al.  Integration, Inference, and Management of Spatial Information Using Bayesian Networks: Perceptual Organization , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[8]  S. Geman,et al.  Diffusions for global optimizations , 1986 .

[9]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[10]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Gérard G. Medioni,et al.  Inferring global perceptual contours from local features , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Radu Horaud,et al.  Figure-Ground Discrimination: A Combinatorial Optimization Approach , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[14]  Alexander Semyon Sherstinsky,et al.  M-lattice: a system for signal synthesis and processing based on reaction-diffusion , 1994 .

[15]  A.S. Sherstinsky,et al.  M-lattice: from morphogenesis to image processing , 1996, IEEE Trans. Image Process..

[16]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.