Visual tracking via efficient kernel discriminant subspace learning

Robustly tracking moving objects in video sequences is one of the key problems in computer vision. In this paper we introduce a computationally efficient nonlinear kernel learning strategy to find a discriminative model which distinguishes the tracked object from the background. Principal component analysis and linear discriminant analysis have been applied to this problem with some success. These techniques are limited, however, by the fact that they are capable only of identifying linear subspaces within the data. Kernel based methods, in contrast, are able to extract nonlinear subspaces, and thus represent more complex characteristics of the tracked object and background. This is a particular advantage when tracking deformable objects and where appearance changes due to the unstable illumination and pose occur. An efficient approximation to kernel discriminant analysis using QR decomposition proposed by Xiong et al. (2004) makes possible real-time updating of the optimal nonlinear subspace. We present a tracking method based on this result and show promising experimental results on real videos undergoing large pose and illumination changes.

[1]  Wojciech Chojnacki,et al.  Estimating Vision Parameters given Data with Covariances , 2000, BMVC.

[2]  Wojciech Chojnacki,et al.  A simplified treatment of Kanatani's renormalisation method , 2000 .

[3]  Pengfei Shi,et al.  Face detection based on Kernel Fisher Discriminant analysis , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[4]  R. Collins,et al.  On-line selection of discriminative tracking features , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[6]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[7]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[8]  Wojciech Chojnacki,et al.  Is covariance information useful in estimating vision parameters? , 2000, IS&T/SPIE Electronic Imaging.

[9]  Julian Magarey,et al.  Incorporating the Epipolar Constraint into a Multiresolution Algorithm for Stereo Image Matching , 1999, Applied Informatics.

[10]  Wojciech Chojnacki,et al.  Robust Techniques for the Estimation of Structure from Motion in the Uncalibrated Case , 1998, ECCV.

[11]  Ming-Hsuan Yang,et al.  Incremental Learning for Visual Tracking , 2004, NIPS.

[12]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Wojciech Chojnacki,et al.  A fast MLE-based method for estimating the fundamental matrix , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[14]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Gang Hua,et al.  Switching observation models for contour tracking in clutter , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[16]  Wojciech Chojnacki,et al.  A new approach to constrained parameter estimation applicable to some computer vision problems , 2002 .

[17]  A. van den Hengel,et al.  Solving the shape-from-shading problem on the CM-5 , 1995, Proceedings of Conference on Computer Architectures for Machine Perception.

[18]  Ming-Hsuan Yang,et al.  Adaptive Discriminative Generative Model and Its Applications , 2004, NIPS.

[19]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[20]  Jieping Ye,et al.  Efficient Kernel Discriminant Analysis via QR Decomposition , 2004, NIPS.

[21]  M. Brooks,et al.  What value covariance information in estimating vision parameters? , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[22]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[23]  Takio Kurita,et al.  A modification of kernel-based Fisher discriminant analysis for face detection , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[24]  Shaogang Gong,et al.  Recognising trajectories of facial identities using kernel discriminant analysis , 2003, Image Vis. Comput..

[25]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[26]  Wojciech Chojnacki,et al.  Rationalising the Renormalisation Method of Kanatani , 2001, Journal of Mathematical Imaging and Vision.