Oxidation Rates and Redox Stabilization of Ferrous Iron in Trioctahedral Smectites

[1]  J. Catalano,et al.  Biological Oxidation of Fe(II)-Bearing Smectite by Microaerophilic Iron Oxidizer Sideroxydans lithotrophicus Using Dual Mto and Cyc2 Iron Oxidation Pathways , 2022, Environmental science & technology.

[2]  Hailiang Dong,et al.  A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications , 2022, National science review.

[3]  A. Thompson,et al.  Localized alteration of ferrihydrite natural organic matter coprecipitates following reaction with Fe(II) , 2022, Soil Science Society of America Journal.

[4]  K. Tamura,et al.  Synthesis of ferrian and ferro-saponites: Implications for the structure of (Fe,Mg)-smectites formed under reduced conditions , 2021, American Mineralogist.

[5]  Jacob L. Jones,et al.  The Structure of Natural Biogenic Iron (Oxyhydr)oxides Formed in Circumneutral pH Environments. , 2021, Geochimica et cosmochimica acta.

[6]  B. Ehlmann,et al.  Synthesis and characterization of Fe(III)-Fe(II)-Mg-Al smectite solid solutions and implications for planetary science , 2021, American Mineralogist.

[7]  Samuel M. Webb,et al.  SIXpack: a graphical user interface for XAS analysis using IFEFFIT , 2005 .

[8]  E. Swanner,et al.  Pervasively anoxic surface conditions at the onset of the Great Oxidation Event: New multi-proxy constraints from the Cooper Lake paleosol , 2019, Precambrian Research.

[9]  G. Rossman,et al.  Ambient and cold‐temperature infrared spectra and XRD patterns of ammoniated phyllosilicates and carbonaceous chondrite meteorites relevant to Ceres and other solar system bodies , 2018 .

[10]  Diego Barcellos,et al.  Influence of pO2 on Iron Redox Cycling and Anaerobic Organic Carbon Mineralization in a Humid Tropical Forest Soil. , 2018, Environmental science & technology.

[11]  S. Chillrud,et al.  Simultaneously Quantifying Ferrihydrite and Goethite in Natural Sediments Using the Method of Standard Additions with X-ray Absorption Spectroscopy. , 2018, Chemical geology.

[12]  R. Morris,et al.  Oxidative Alteration of Ferrous Smectites and Implications for the Redox Evolution of Early Mars , 2017, Journal of geophysical research. Planets.

[13]  S. Desch,et al.  Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides , 2017 .

[14]  F. Baron,et al.  Revisiting the nontronite Mössbauer spectra , 2017 .

[15]  D. Sparks,et al.  Solid-Phase Fe Speciation along the Vertical Redox Gradients in Floodplains using XAS and Mössbauer Spectroscopies. , 2017, Environmental science & technology.

[16]  E. Fehr,et al.  From the lab to the real world , 2015, Science.

[17]  J. Stucki,et al.  Effects of iron oxidation state on the fate and behavior of potassium in soils. , 2015 .

[18]  B. Ravel,et al.  Analysis of Soils and Minerals Using X‐ray Absorption Spectroscopy , 2015 .

[19]  R. Morris,et al.  Synthesis and structural characterization of ferrous trioctahedral smectites: Implications for clay mineral genesis and detectability on Mars , 2015 .

[20]  R. Kukkadapu,et al.  Biological redox cycling of iron in nontronite and its potential application in nitrate removal. , 2015, Environmental science & technology.

[21]  K. Rosso,et al.  Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria , 2015, Science.

[22]  R. Morris,et al.  Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater , 2014 .

[23]  L. Liang,et al.  Identification of an Archean marine oxygen oasis , 2014 .

[24]  J. H. Kim,et al.  Structural and chemical modification of Nontronite associated with microbial Fe(III) reduction: Indicators of “Illitization” , 2014 .

[25]  I. Letofsky-Papst,et al.  The Fe-Mg-saponite solid solution series – a hydrothermal synthesis study , 2014, Clay Minerals.

[26]  Fubo Luan,et al.  Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium. , 2014, Environmental science & technology.

[27]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[28]  R. V. Morris,et al.  Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[29]  E. Roden,et al.  Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments , 2013, Front. Microbiol..

[30]  Y. Stierhof,et al.  Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria , 2013, Applied and Environmental Microbiology.

[31]  T. Hofstetter,et al.  Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties. , 2013, Environmental science & technology.

[32]  R. Kukkadapu,et al.  Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. Strain 2002 , 2013 .

[33]  K. Su,et al.  A review of microbial redox interactions with structural Fe in clay minerals , 2013, Clay Minerals.

[34]  P. K. Tarafder,et al.  An Optimised 1,10‐Phenanthroline Method for the Determination of Ferrous and Ferric Oxides in Silicate Rocks, Soils and Minerals , 2013 .

[35]  A. Kappler,et al.  Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate‐reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 – questioning the existence of enzymatic Fe(II) oxidation , 2013, Geobiology.

[36]  S. D’Hondt,et al.  Nature and Extent of the Deep Biosphere , 2012 .

[37]  T. Hofstetter,et al.  Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1. , 2012, Environmental science & technology.

[38]  E. Roden,et al.  Microbial Lithotrophic Oxidation of Structural Fe(II) in Biotite , 2012, Applied and Environmental Microbiology.

[39]  E. Roden,et al.  Isolation of Phyllosilicate–Iron Redox Cycling Microorganisms from an Illite–Smectite Rich Hydromorphic Soil , 2012, Front. Microbio..

[40]  T. Hofstetter,et al.  Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy , 2011 .

[41]  J. Stucki A review of the effects of iron redox cycles on smectite properties , 2011 .

[42]  D. Jaisi,et al.  The Formation of Illite from Nontronite by Mesophilic and Thermophilic Bacterial Reaction , 2011 .

[43]  Gengxin Zhang,et al.  Review Paper. Microbe-clay mineral interactions , 2009 .

[44]  J. Alt Very Low‐Grade Hydrothermal Metamorphism of Basic Igneous Rocks , 2009 .

[45]  J. Kostka,et al.  Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature Mössbauer spectroscopic study of Garfield nontronite , 2009 .

[46]  Thomas B Hofstetter,et al.  Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes. , 2008, Environmental science & technology.

[47]  B. Velde,et al.  The Origin of Clay Minerals in Soils and Weathered Rocks , 2008 .

[48]  J. Bishop,et al.  Mössbauer spectroscopy of phyllosilicates: effects of fitting models on recoil-free fractions and redox ratios , 2008, Clay Minerals.

[49]  D. Canfield,et al.  Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life , 2007, Science.

[50]  Andrew Scott Rivkin,et al.  The surface composition of Ceres: Discovery of carbonates and iron-rich clays , 2006 .

[51]  K. Weber,et al.  Anaerobic Nitrate-Dependent Iron(II) Bio-Oxidation by a Novel Lithoautotrophic Betaproteobacterium, Strain 2002 , 2006, Applied and Environmental Microbiology.

[52]  A. Kappler,et al.  Fe(III) mineral formation and cell encrustation by the nitrate‐dependent Fe(II)‐oxidizer strain BoFeN1 , 2005 .

[53]  P. Komadel,et al.  Preparation and Properties of Reduced-Charge Smectites — A Review , 2005 .

[54]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[55]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[56]  V. M. Ivanov,et al.  The 125th Anniversary of the Griess Reagent , 2004 .

[57]  Hailiang Dong,et al.  Role of Microbes in the Smectite-to-Illite Reaction , 2004, Science.

[58]  J. Cashion,et al.  Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization , 2003 .

[59]  D. Teagle,et al.  Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801 , 2003 .

[60]  B. Sreedhar,et al.  Ferrous saponite from the Deccan Trap, India, and its application in adsorption and reduction of hexavalent chromium , 2003 .

[61]  D. Lovley,et al.  Use of Ferric and Ferrous Iron Containing Minerals for Respiration by Desulfitobacterium frappieri , 2003 .

[62]  V. Briois,et al.  Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe K-edge X-ray absorption spectroscopy study , 2003 .

[63]  G. Redhammer,et al.  Single-crystal structure refinements and crystal chemistry of synthetic trioctahedral micas KM3(Al3+,Si4+)4O10(OH)2, where M = Ni2+, Mg2+, Co2+, Fe2+, or Al3+ , 2002 .

[64]  J. Stucki,et al.  Infrared study of reduced and reduced-reoxidized ferruginous smectite , 2002 .

[65]  J. Stucki,et al.  Effect of Fe oxidation state on the IR spectra of Garfield nontronite , 2002 .

[66]  A. Knoll,et al.  Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia , 2002 .

[67]  L. Michot,et al.  Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region , 2001, Clay Minerals.

[68]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[69]  V. Drits,et al.  A Model for the Mechanism of Fe3+ to Fe2+ Reduction in Dioctahedral Smectites , 2000 .

[70]  B. Roberts Low Grade Metamorphism , 1999, Clay Minerals.

[71]  P. Komadel,et al.  Partial Stabilization of Fe(II) in Reduced Ferruginous Smectite by Li Fixation , 1999 .

[72]  C. Glass,et al.  Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation , 1998 .

[73]  D. Rancourt,et al.  Extended Voigt-based analytic lineshape method for determining N-dimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy , 1997 .

[74]  D. W. Smith,et al.  Formation of authigenic Fe2+‐bearing smectite‐vermiculite during terrestrial diagenesis, southern New Zealand , 1995 .

[75]  P. Komadel,et al.  Reduction and Reoxidation of Nontronite: Questions of Reversibility , 1995 .

[76]  I. Swainson,et al.  Magnetism of synthetic and natural annite mica: ground state and nature of excitations in an exchange-wise two-dimensional easy-plane ferromagnet with disorder , 1994 .

[77]  D. Rancourt Mössbauer spectroscopy of minerals , 1994 .

[78]  D. Rancourt Mössbauer spectroscopy of minerals , 1994 .

[79]  C. Boast,et al.  Effects of Structural Iron Reduction on the Hydraulic Conductivity of Na-Smectite , 1992 .

[80]  R. April,et al.  Saponite and Vermiculite in Amygdales of the Granby Basaltic Tuff, Connecticut Valley , 1992 .

[81]  J. Stucki,et al.  Iron Oxidation State Effects on Cation Fixation in Smectites , 1991 .

[82]  P. Komadel,et al.  Reduction and Reoxidation of Nontronite: Extent of Reduction and Reaction Rates , 1990 .

[83]  D. Bonnin,et al.  Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: experiments in partially reducing conditions , 1986, Clay Minerals.

[84]  J. Alt,et al.  Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater‐basalt interactions , 1986 .

[85]  D. Dickson,et al.  Magnetic Ordering At 4.2 And 1.3 K in Nontronites of Different Iron Contents: A 57Fe Mössbauer Spectroscopic Study , 1986 .

[86]  A. Decarreau,et al.  Occurrence of a ferrous, trioctahedral smectite in Recent sediments of Atlantis II Deep, Red Sea , 1985, Clay Minerals.

[87]  M. Fleet,et al.  A Mössbauer Study of Saponite in Layer 2 Basalt, Deep Sea Drilling Project Leg 69 , 1983 .

[88]  C. Neyra Crystal Structures of Clay Minerals and Their X-ray Identification , 1983 .

[89]  J. Tiedje,et al.  Kinetic Explanation for Accumulation of Nitrite, Nitric Oxide, and Nitrous Oxide During Bacterial Denitrification , 1981, Applied and environmental microbiology.

[90]  L. Heller-Kallai,et al.  The use of mössbauer spectroscopy of iron in clay mineralogy , 1981 .

[91]  K. Burke,et al.  Magnetic properties of sheet silicates; 2:1:1 layer minerals , 1981 .

[92]  A. Andrews Saponite and celadonite in layer 2 basalts, DSDP Leg 37 , 1980 .

[93]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[94]  T. Sudo,et al.  Iron-Rich Saponite (Ferrous and Ferric Forms) , 1973 .

[95]  R. Hazen,et al.  A model for late Archean chemical weathering and world average river water , 2017 .

[96]  S. Wankel,et al.  A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide , 2017 .

[97]  H. Holland 6.21 – The Geologic History of Seawater , 2007 .

[98]  R. Evans,et al.  Hyperfine electric field gradients and local distortion environments of octahedrally coordinated Fe2+ , 2005 .

[99]  D. Emerson,et al.  Enrichment and isolation of iron-oxidizing bacteria at neutral pH. , 2005, Methods in enzymology.

[100]  D. Chateigner,et al.  Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites , 2000 .

[101]  D. Chateigner,et al.  Oxidation-reduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of reduced Garfield nontronite , 2000 .

[102]  D. Teagle Alteration of upper oceanic crust in a ridge-flank hydrothermal upflow zone : mineral, chemical, and isotopic constraints from Hole 896A , 1996 .

[103]  F. Ugolini,et al.  Quantitative Methods in Soil Mineralogy. , 1996 .

[104]  Tsutomu Sato,et al.  Expansion characteristics of montmorillonite and saponite under various relative humidity conditions. , 1988 .

[105]  H. Kristmannsdóttir Alteration of Basaltic Rocks by Hydrothermal-Activity at 100-300°C , 1979 .

[106]  F. Huggins Mössbauer studies of iron minerals under pressures of up to 200 kilobars , 1975 .