Cosmological structure formation with augmented Lagrangian perturbation theory
暂无分享,去创建一个
[1] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.
[2] F. Kitaura,et al. Linearization with cosmological perturbation theory , 2011, 1111.6617.
[3] S. Shandarin,et al. ACCURACY OF LAGRANGIAN APPROXIMATIONS IN VOIDS , 1996 .
[4] Piet Hut,et al. A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.
[5] T. Buchert. Lagrangian theory of gravitational instability of Friedman-Lemaître cosmologies: a generic third-order model for non-linear clustering , 1993, astro-ph/9309055.
[6] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[7] Constrained Simulations of the Real Universe: The Local Supercluster , 2001, astro-ph/0107104.
[8] T. Buchert,et al. Lagrangian perturbations and the matter bispectrum I: fourth-order model for non-linear clustering , 2012, 1203.4260.
[9] Lagrangian dynamics in non-flat universes and non-linear gravitational evolution , 1994, astro-ph/9406016.
[10] M. Neyrinck. Quantifying distortions of the Lagrangian dark-matter mesh in cosmology , 2012, 1204.1326.
[11] I. Szapudi,et al. FAST GENERATION OF ENSEMBLES OF COSMOLOGICAL N-BODY SIMULATIONS VIA MODE RESAMPLING , 2011, 1103.2767.
[12] E. Bertschinger. SIMULATIONS OF STRUCTURE FORMATION IN THE UNIVERSE , 1998 .
[13] M. Crocce,et al. Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.
[14] R. Cen,et al. 21cmfast: a fast, seminumerical simulation of the high‐redshift 21‐cm signal , 2010, 1003.3878.
[15] Simon D. M. White,et al. One simulation to fit them all - changing the background parameters of a cosmological N-body simulation , 2009, 0912.4277.
[16] R. Sheth,et al. PTHALOS: a fast method for generating mock galaxy distributions , 2001, astro-ph/0106120.
[17] S. Colombi,et al. Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.
[18] Edwin Sirko,et al. Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .
[19] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[20] M. Zaldarriaga,et al. The mildly non-linear regime of structure formation , 2011, 1109.4939.
[21] R. Brent Tully,et al. The Cosmological Mean Density and Its Local Variations Probed by Peculiar Velocities , 2005, astro-ph/0509313.
[22] Francisco-Shu Kitaura,et al. The Initial Conditions of the Universe from Constrained Simulations , 2012, ArXiv.
[23] D. Chernoff,et al. Extending the domain of validity of the Lagrangian approximation , 2010, 1005.1217.
[24] Predicting the Number, Spatial Distribution, and Merging History of Dark Matter Halos , 2001, astro-ph/0109322.
[25] Joseph Silk,et al. Reconstruction of primordial density fields , 2005, astro-ph/0501217.
[26] A. Jenkins,et al. Second-order Lagrangian perturbation theory initial conditions for resimulations , 2009, 0910.0258.
[27] The Nonlinear Evolution of Rare Events , 1993, astro-ph/9311066.
[28] A. Klypin,et al. Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.
[29] F. Kitaura,et al. Estimating cosmic velocity fields from density fields and tidal tensors , 2011, 1111.6629.
[30] S. Colombi,et al. Observational biases in Lagrangian reconstructions of cosmic velocity fields , 2007, 0707.3483.
[31] J. Brinkmann,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.