Generalizing the Ramsey Problem through Diameter

Given a graph $G$ and positive integers $d,k$, let $f_d^k(G)$ be the maximum $t$ such that every $k$-coloring of $E(G)$ yields a monochromatic subgraph with diameter at most $d$ on at least $t$ vertices. Determining $f_1^k(K_n)$ is equivalent to determining classical Ramsey numbers for multicolorings. Our results include $\bullet$ determining $f_d^k(K_{a,b})$ within 1 for all $d,k,a,b$ $\bullet$ for $d \ge 4$, $f_d^3(K_n)=\lceil n/2 \rceil +1$ or $\lceil n/2 \rceil$ depending on whether $n \equiv 2 (mod 4)$ or not $\bullet$ $f_3^k(K_n) > {{n}\over {k-1+1/k}}$ The third result is almost sharp, since a construction due to Calkin implies that $f_3^k(K_n) \le {{n}\over {k-1}} +k-1$ when $k-1$ is a prime power. The asymptotics for $f_d^k(K_n)$ remain open when $d=k=3$ and when $d\ge 3, k \ge 4$ are fixed.

[1]  Michael S. Jacobson On a generalization of Ramsey theory , 1982, Discret. Math..

[2]  Richard H. Schelp,et al.  Ramsey Problems with Bounded Degree Spread , 1993, Combinatorics, probability & computing.

[3]  D. West Introduction to Graph Theory , 1995 .

[4]  V. Chvatal,et al.  On Finite Polarized Partition Relations , 1969, Canadian Mathematical Bulletin.

[5]  P. Erdös,et al.  On a metric generalization of ramsey’s theorem , 1995 .

[6]  András Gyárfás,et al.  Fruit Salad , 1997, Electron. J. Comb..

[7]  Tom Fowler Finding Large Monochromatic Diameter Two Subgraphs , 1999, math/9908170.

[8]  C. L. Liu,et al.  A generalization of Ramsey theory for graphs , 1978, Discret. Math..

[9]  Paul Erdös,et al.  Generalizations of a Ramsey-theoretic result of chvátal , 1983, J. Graph Theory.

[10]  Vojtěch Rödl,et al.  A structural generalization of the Ramsey theorem , 1977 .

[11]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[12]  András Hajnal,et al.  Polarized partition relations , 2001, Journal of Symbolic Logic.