Sparse subspace clustering via nonconvex approximation

AbstractAmong existing clustering methods, sparse subspace clustering (SSC) obtains superior clustering performance in grouping data points from a union of subspaces by solving a relaxed $$\ell _{0}$$ℓ0-minimization problem by $$\ell _{1}$$ℓ1-norm. The use of $$\ell _{1}$$ℓ1-norm instead of the $$\ell _{0}$$ℓ0 one can make the object function convex, while it also causes large errors on large coefficients in some cases. In this work, we propose using the nonconvex approximation to replace $$\ell _{0}$$ℓ0-norm for SSC, termed as SSC via nonconvex approximation (SSCNA), and develop a novel clustering algorithm with the enhanced sparsity based on the Alternating Direction Method of Multipliers. We further prove that the proposed nonconvex approximation is closer to $$\ell _{0}$$ℓ0-norm than the $$\ell _{1}$$ℓ1 one and is bounded by $$\ell _{0}$$ℓ0-norm. Numerical studies show that the proposed nonconvex approximation helps to improve clustering performance. We also theoretically verify the convergence of the proposed algorithm with a three-variable objective function. Extensive experiments on four benchmark datasets demonstrate the effectiveness of the proposed method.

[1]  Yoram Bresler,et al.  A new algorithm for computing sparse solutions to linear inverse problems , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[2]  Takeo Kanade,et al.  A Multibody Factorization Method for Independently Moving Objects , 1998, International Journal of Computer Vision.

[3]  René Vidal,et al.  A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[5]  Ke Chen,et al.  Reweighted sparse subspace clustering , 2015, Comput. Vis. Image Underst..

[6]  Jun Wang,et al.  LRSR: Low-Rank-Sparse representation for subspace clustering , 2016, Neurocomputing.

[7]  Jitendra Malik,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Segmentation of Moving Objects by Long Term Video Analysis , 2022 .

[8]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[9]  Shuicheng Yan,et al.  Correlation Adaptive Subspace Segmentation by Trace Lasso , 2013, 2013 IEEE International Conference on Computer Vision.

[10]  Marc Pollefeys,et al.  A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate , 2006, ECCV.

[11]  A. Martínez,et al.  The AR face databasae , 1998 .

[12]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[13]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[14]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[15]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Davies Rémi Gribonval Restricted Isometry Constants Where Lp Sparse Recovery Can Fail for 0 , 2008 .

[17]  Guangliang Chen,et al.  Spectral Curvature Clustering (SCC) , 2009, International Journal of Computer Vision.

[18]  P. Tseng Nearest q-Flat to m Points , 2000 .

[19]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[20]  David J. Kriegman,et al.  Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[21]  Duan Li,et al.  Reweighted 1-Minimization for Sparse Solutions to Underdetermined Linear Systems , 2012, SIAM J. Optim..

[22]  KanadeTakeo,et al.  Shape and motion from image streams under orthography , 1992 .

[23]  Rémi Gribonval,et al.  Restricted Isometry Constants Where $\ell ^{p}$ Sparse Recovery Can Fail for $0≪ p \leq 1$ , 2009, IEEE Transactions on Information Theory.

[24]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[25]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[26]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[27]  René Vidal,et al.  Structured Sparse Subspace Clustering: A unified optimization framework , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[29]  Yair Weiss,et al.  Multibody factorization with uncertainty and missing data using the EM algorithm , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[30]  René Vidal,et al.  Low rank subspace clustering (LRSC) , 2014, Pattern Recognit. Lett..

[31]  Shuicheng Yan,et al.  Correntropy Induced L2 Graph for Robust Subspace Clustering , 2013, 2013 IEEE International Conference on Computer Vision.

[32]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  P. K. Sahoo,et al.  Mean Value Theorems and Functional Equations , 1998 .

[34]  René Vidal,et al.  Ieee Journal of Selected Topics in Signal Processing, Vol. X, No. X, Month 20xx 1 Latent Space Sparse and Low-rank Subspace Clustering , 2022 .

[35]  Daniel P. Robinson,et al.  Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Suchi Saria,et al.  Convex envelopes of complexity controlling penalties: the case against premature envelopment , 2011, AISTATS.

[37]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[38]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Shuicheng Yan,et al.  Robust and Efficient Subspace Segmentation via Least Squares Regression , 2012, ECCV.

[40]  Nebojsa Jojic,et al.  -Sparse Subspace Clustering , 2016 .

[41]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[42]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[43]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[44]  Wei-Ying Ma,et al.  Locality preserving clustering for image database , 2004, MULTIMEDIA '04.

[45]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.