Learning-based State Reconstruction for a Scalar Hyperbolic PDE under noisy Lagrangian Sensing

The state reconstruction problem of a heterogeneous dynamic system under sporadic measurements is considered. This system consists of a conversation flow together with a multi-agent network modeling particles within the flow. We propose a partial-state reconstruction algorithm using physics-informed learning based on local measurements obtained from these agents. Traffic density reconstruction is used as an example to illustrate the results and it is shown that the approach provides an efficient noise rejection.

[1]  Gil Zussman,et al.  Physics-Informed Deep Neural Network Method for Limited Observability State Estimation , 2019, ArXiv.

[2]  Alexandre M. Bayen,et al.  Flow: Architecture and Benchmarking for Reinforcement Learning in Traffic Control , 2017, ArXiv.

[3]  B D Greenshields,et al.  A study of traffic capacity , 1935 .

[4]  G. Bastin,et al.  Stability and Boundary Stabilization of 1-D Hyperbolic Systems , 2016 .

[5]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[6]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[7]  K. Johansson,et al.  Learning-based Traffic State Reconstruction using Probe Vehicles , 2020, 2011.05031.

[8]  Dongsuk Kum,et al.  Camera and Radar Sensor Fusion for Robust Vehicle Localization via Vehicle Part Localization , 2020, IEEE Access.

[9]  Alexandre M. Bayen,et al.  Traffic state estimation on highway: A comprehensive survey , 2017, Annu. Rev. Control..

[10]  E. Zuazua,et al.  Filtered gradient algorithms for inverse design problems of one-dimensional burgers equation , 2017 .

[11]  Karl Henrik Johansson,et al.  Numerical Investigation of Traffic State Reconstruction and Control Using Connected Automated Vehicles , 2020, 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC).

[12]  Karl Henrik Johansson,et al.  Dynamic Traffic Reconstruction using Probe Vehicles , 2020, 2020 59th IEEE Conference on Decision and Control (CDC).

[13]  Mobile Century Using GPS Mobile Phones as Traffic Sensors : A Field Experiment , 2008 .

[14]  Dorothee D. Haroske,et al.  Function spaces, differential operators and nonlinear analysis , 1993 .

[15]  Yann LeCun,et al.  The Loss Surfaces of Multilayer Networks , 2014, AISTATS.

[16]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[17]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[18]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[19]  Antonella Ferrara,et al.  Traffic control via moving bottleneck of coordinated vehicles , 2018 .

[20]  John S. Baras,et al.  Inferring Particle Interaction Physical Models and Their Dynamical Properties , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[21]  Kristian Kirsch,et al.  Theory Of Ordinary Differential Equations , 2016 .

[22]  Jiheng Huang,et al.  Physics Informed Deep Learning for Traffic State Estimation , 2020, 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC).

[23]  Lyle H. Ungar,et al.  A hybrid neural network‐first principles approach to process modeling , 1992 .

[24]  Eugene Vinitsky,et al.  Flow: A Modular Learning Framework for Autonomy in Traffic. , 2017 .

[25]  Michel Rascle,et al.  Resurrection of "Second Order" Models of Traffic Flow , 2000, SIAM J. Appl. Math..

[26]  Zehang Sun,et al.  On-road vehicle detection: a review , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Michael V. Klibanov,et al.  Estimates of initial conditions of parabolic equations and inequalities via lateral Cauchy data , 2006 .

[28]  Maria Laura Delle Monache,et al.  Traffic Regulation via Controlled Speed Limit , 2016, SIAM J. Control. Optim..

[29]  H. M. Zhang A NON-EQUILIBRIUM TRAFFIC MODEL DEVOID OF GAS-LIKE BEHAVIOR , 2002 .

[30]  David Abend,et al.  Maximum Principles In Differential Equations , 2016 .

[31]  M. Garavello,et al.  Vanishing viscosity for mixed systems with moving boundaries , 2013 .

[32]  M. Krstić,et al.  Backstepping observers for a class of parabolic PDEs , 2005, Syst. Control. Lett..

[33]  Markos Papageorgiou,et al.  Freeway Traffic Modelling and Control , 1983 .

[34]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[35]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  Rama Chellappa,et al.  Vehicle detection and tracking using acoustic and video sensors , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[37]  Dimitrios I. Fotiadis,et al.  Artificial neural networks for solving ordinary and partial differential equations , 1997, IEEE Trans. Neural Networks.

[38]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[39]  Alexandre M. Bayen,et al.  Incorporation of Lagrangian measurements in freeway traffic state estimation , 2010 .

[40]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[41]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[42]  J. Graver,et al.  Graduate studies in mathematics , 1993 .

[43]  R. Colombo,et al.  Mixed systems: ODEs - balance laws , 2012 .

[44]  P. I. Richards Shock Waves on the Highway , 1956 .

[45]  Justin A. Sirignano,et al.  DGM: A deep learning algorithm for solving partial differential equations , 2017, J. Comput. Phys..

[46]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[47]  Junfei Qiao,et al.  PI boundary control of linear hyperbolic balance laws with stabilization of ARZ traffic flow models , 2019, Syst. Control. Lett..

[48]  R. LeVeque Numerical methods for conservation laws , 1990 .

[49]  Miroslav Krstic,et al.  Boundary Observer for Congested Freeway Traffic State Estimation via Aw-Rascle-Zhang model , 2019, IFAC-PapersOnLine.

[50]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[51]  Maria Laura Delle Monache,et al.  Traffic Reconstruction Using Autonomous Vehicles , 2019, SIAM J. Appl. Math..