Modelling the outbreak of infectious disease following mutation from a non-transmissible strain

[1]  Maia Martcheva,et al.  AVIAN FLU: MODELING AND IMPLICATIONS FOR CONTROL , 2014 .

[2]  Nyuk Sian Chong,et al.  A mathematical model of avian influenza with half-saturated incidence , 2013, Theory in Biosciences.

[3]  Joel C. Miller,et al.  A Note on the Derivation of Epidemic Final Sizes , 2012, Bulletin of mathematical biology.

[4]  Zhen Jin,et al.  A Simple Stochastic Model with Environmental Transmission Explains Multi-Year Periodicity in Outbreaks of Avian Flu , 2012, PloS one.

[5]  Viggo Andreasen,et al.  The Final Size of an Epidemic and Its Relation to the Basic Reproduction Number , 2011, Bulletin of mathematical biology.

[6]  Max O. Souza,et al.  The SIR epidemic model from a PDE point of view , 2009, Math. Comput. Model..

[7]  Abba B. Gumel,et al.  Global dynamics of a two-strain avian influenza model , 2009, Int. J. Comput. Math..

[8]  R. Christley,et al.  Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock , 2008, Proceedings of the Royal Society B: Biological Sciences.

[9]  Xianning Liu,et al.  Avian-human influenza epidemic model. , 2007, Mathematical biosciences.

[10]  Jean M. Tchuenche,et al.  Global behaviour of an SIR epidemic model with time delay , 2007 .

[11]  Armin Elbers,et al.  Risk Maps for the Spread of Highly Pathogenic Avian Influenza in Poultry , 2007, PLoS Comput. Biol..

[12]  G. Chowell,et al.  Comparative estimation of the reproduction number for pandemic influenza from daily case notification data , 2007, Journal of The Royal Society Interface.

[13]  Michael Greger,et al.  The Human/Animal Interface: Emergence and Resurgence of Zoonotic Infectious Diseases , 2007, Critical reviews in microbiology.

[14]  Henry C Tuckwell,et al.  Some properties of a simple stochastic epidemic model of SIR type , 2006, Mathematical Biosciences.

[15]  David L. Smith,et al.  Key strategies for reducing spread of avian influenza among commercial poultry holdings: lessons for transmission to humans , 2006, Proceedings of the Royal Society B: Biological Sciences.

[16]  M. Feldman,et al.  Epidemic dynamics and antigenic evolution in a single season of influenza A , 2006, Proceedings of the Royal Society B: Biological Sciences.

[17]  M. Tapper,et al.  Emerging viral diseases and infectious disease risks , 2006, Haemophilia : the official journal of the World Federation of Hemophilia.

[18]  Zhen Jin,et al.  The stability of an sir epidemic model with time delays. , 2005, Mathematical biosciences and engineering : MBE.

[19]  Pasquale Vetro,et al.  Stability of a stochastic SIR system , 2005 .

[20]  G. Gibson,et al.  Novel moment closure approximations in stochastic epidemics , 2005, Bulletin of mathematical biology.

[21]  Marjorie J. Wonham,et al.  An epidemiological model for West Nile virus: invasion analysis and control applications , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  Philip K Maini,et al.  A lyapunov function and global properties for sir and seir epidemiological models with nonlinear incidence. , 2004, Mathematical biosciences and engineering : MBE.

[23]  Renato Casagrandi,et al.  Traveling waves in a model of influenza A drift. , 2003, Journal of theoretical biology.

[24]  N. Ferguson,et al.  Ecological and immunological determinants of influenza evolution , 2003, Nature.

[25]  M. Newman,et al.  Simple model of epidemics with pathogen mutation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  D J Alexander,et al.  A review of avian influenza in different bird species. , 2000, Veterinary microbiology.

[27]  C. Scholtissek,et al.  Source for influenza pandemics , 1994, European Journal of Epidemiology.

[28]  V Isham,et al.  Assessing the variability of stochastic epidemics. , 1991, Mathematical biosciences.

[29]  C. M. Pease An evolutionary epidemiological mechanism, with applications to type A influenza. , 1987, Theoretical population biology.

[30]  J. Murray,et al.  A simple model for the spatial spread and control of rabies. , 1985, Journal of theoretical biology.

[31]  Kenneth L. Cooke,et al.  Stability analysis for a vector disease model , 1979 .

[32]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[33]  P. Maini,et al.  Instructions for use Title A Lyapunov function and global properties for , 2017 .

[34]  Zhang Xing An Epidemiological Model , 2011 .

[35]  L. Allen An introduction to stochastic processes with applications to biology , 2003 .

[36]  Stanca M. Ciupe,et al.  Mathematical biology , 2020, Encyclopedia of Evolutionary Psychological Science.