Plasmonic and phononic properties of epitaxial conductive transition metal nitrides

The dielectric function, reflectivity and Raman spectra of several epitaxial transition metal nitride films (TiN, ZrN, NbN, TaN, MoN, WN) on MgO substrates are reported. Apart from WN, the studied films exhibit a negative real part of the dielectric function, and thus may sustain plasmonic resonances with varying quality factors and at diverse spectral regions. Epitaxial TiN and ZrN outperform the rest of the studied nitrides in terms of the plasmonic figures of merit. TiN and ZrN colloidal nanoparticles in water and ethanol are predicted to support localized surface plasmon resonances at 596 and 496 nm, respectively. Surprisingly, the reported epitaxial films are not superior to their previously reported polycrystalline counterparts due to the existence of point defects (mostly metal vacancies for group Vb nitrides and both metal and nitrogen vacancies for group VIb nitrides) as revealed by the Raman spectra. Raman spectroscopy emerges as a sensitive tool for the detection of point defects in epitaxial transition metal nitrides via the recording of the otherwise forbidden first order acoustic modes. The role of the various structural defects in the optical and plasmonic performance of the films is discussed. Unlike the traditional plasmonic metals (Ag and Au), the point defects are revealed to be of paramount importance for the optical response of the reported alternative plasmonic materials.

[1]  L. Belliard,et al.  Large influence of vacancies on the elastic constants of cubic epitaxial tantalum nitride layers grown by reactive magnetron sputtering , 2020 .

[2]  P. Patsalas Zirconium nitride: A viable candidate for photonics and plasmonics? , 2019, Thin Solid Films.

[3]  A. S. Kostyukov,et al.  Super-efficient laser hyperthermia of malignant cells with core-shell nanoparticles based on alternative plasmonic materials , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[4]  V. Shalaev,et al.  Near-zero-index materials for photonics , 2019, Nature Reviews Materials.

[5]  S. Gwo,et al.  Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold , 2019, ACS Photonics.

[6]  R. Sundararaman,et al.  Near-Zero Negative Real Permittivity in Far Ultraviolet: Extending Plasmonics and Photonics with B1-MoNx , 2019, The Journal of Physical Chemistry C.

[7]  S. Maier,et al.  Plasmon-Enhanced Electron Harvesting in Robust Titanium Nitride Nanostructures , 2019, The Journal of Physical Chemistry C.

[8]  Anabela Da Silva,et al.  Laser- synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications , 2019, Scientific Reports.

[9]  D. Gall,et al.  Energetics of point defects in rocksalt structure transition metal nitrides: Thermodynamic reasons for deviations from stoichiometry , 2018, Acta Materialia.

[10]  S. Maier,et al.  Temperature stability of thin film refractory plasmonic materials. , 2018, Optics express.

[11]  A. Urbas,et al.  Epitaxial titanium nitride on sapphire: Effects of substrate temperature on microstructure and optical properties , 2018 .

[12]  E. Lidorikis,et al.  Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics , 2018 .

[13]  T. Sands,et al.  Tailoring of surface plasmon resonances in TiN/(Al0.72Sc0.28)N multilayers by dielectric layer thickness variation , 2018, Journal of Materials Science.

[14]  D. Wexler,et al.  Understanding reaction sequences and mechanisms during synthesis of nanocrystalline Ti2N and TiN via magnetically controlled ball milling of Ti in nitrogen , 2018, Journal of Materials Science.

[15]  Liping Huang,et al.  Phase stability and mechanical properties of Mo1-xNx with 0 ≤ x ≤ 1 , 2017 .

[16]  Liping Huang,et al.  Elastic constants of epitaxial cubic MoNx(001) layers , 2017 .

[17]  V. Shalaev,et al.  Optical Properties of Plasmonic Ultrathin TiN Films , 2017 .

[18]  D. Gall,et al.  Cation and anion vacancies in cubic molybdenum nitride , 2017 .

[19]  J. Pierson,et al.  Infrared Plasmonics with Conductive Ternary Nitrides. , 2017, ACS applied materials & interfaces.

[20]  D. Gall,et al.  Electronic and optical properties of rocksalt-phase tungsten nitride (B1-WN) , 2017 .

[21]  D. Gall,et al.  Vacancy-induced mechanical stabilization of cubic tungsten nitride , 2016 .

[22]  Liping Huang,et al.  Cubic β-WNx layers: Growth and properties vs N-to-W ratio , 2016 .

[23]  E. Lidorikis,et al.  Plasmonic spectral tunability of conductive ternary nitrides , 2016 .

[24]  O. Svoboda,et al.  Point defects stabilise cubic Mo-N and Ta-N , 2016, 1604.02718.

[25]  D. Gall,et al.  Growth and mechanical properties of epitaxial NbN(001) films on MgO(001) , 2016 .

[26]  Katsuhisa Tanaka,et al.  Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films. , 2016, Optics express.

[27]  T. Nagao,et al.  Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach , 2015, 1510.04760.

[28]  Shikuan Yang,et al.  Ultrasensitive surface-enhanced Raman scattering detection in common fluids , 2015, Proceedings of the National Academy of Sciences.

[29]  Liping Huang,et al.  Epitaxial growth and properties of cubic WN on MgO(001), MgO(111), and Al2O3(0001) , 2015 .

[30]  A. C. Bose,et al.  Impact of crystalline defects and size on X-ray line broadening: A phenomenological approach for tetragonal SnO2 nanocrystals , 2015 .

[31]  Vladimir M. Shalaev,et al.  Nanoparticle plasmonics: going practical with transition metal nitrides , 2015 .

[32]  S. Goumri‐Said,et al.  Electronic structure and mechanical properties of ternary ZrTaN alloys studied by ab initio calculations and thin-film growth experiments , 2014 .

[33]  Werner Scholz,et al.  Plasmonic near-field transducer for heat-assisted magnetic recording , 2014 .

[34]  Jing Liu,et al.  Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials , 2014, Proceedings of the National Academy of Sciences.

[35]  S. Schlücker Surface-enhanced Raman spectroscopy: concepts and chemical applications. , 2014, Angewandte Chemie.

[36]  Junghyun Park,et al.  Electro-optical modulation of a silicon waveguide with an "epsilon-near-zero" material. , 2013, Optics express.

[37]  J. Parsons,et al.  Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths , 2013, Nature Photonics.

[38]  A. Rockett,et al.  Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering , 2013 .

[39]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[40]  Alessandro Alabastri,et al.  Plasmon based biosensor for distinguishing different peptides mutation states , 2013, Scientific Reports.

[41]  H. Terai,et al.  High-quality epitaxial NbN/AlN/NbN tunnel junctions with a wide range of current density , 2013 .

[42]  Grigorios Matenoglou,et al.  Structure, electronic properties and electron energy loss spectra of transition metal nitride films , 2013 .

[43]  T. Matikas,et al.  Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting. , 2012, ACS nano.

[44]  K. A. Padmanabhan,et al.  Optical reflectance, dielectric functions and phonon-vibrational modes of reactively sputtered Nb-substituted TiN thin films , 2012 .

[45]  Andrea Toma,et al.  Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures , 2011 .

[46]  I. Petrov,et al.  Raman scattering from TiNx (0.67 ≤ x ≤ 1.00) single crystals grown on MgO(001) , 2011 .

[47]  Elefterios Lidorikis,et al.  Surface-enhanced Raman spectroscopy of graphene. , 2010, ACS nano.

[48]  H. Seo,et al.  Fully strained low-temperature epitaxy of TiN/MgO(001) layers using high-flux, low-energy ion irradiation during reactive magnetron sputter deposition , 2010 .

[49]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[50]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[51]  Grigorios Matenoglou,et al.  Plasma energy and work function of conducting transition metal nitrides for electronic applications , 2009 .

[52]  Grigorios Matenoglou,et al.  Optical properties, structural parameters, and bonding of highly textured rocksalt tantalum nitride films , 2008 .

[53]  G. Abadias,et al.  In situ stress evolution during magnetron sputtering of transition metal nitride thin films , 2008 .

[54]  H. Seo,et al.  Effect of off stoichiometry on Raman scattering from epitaxial and polycrystalline HfNx (0.85≤x≤ 1.50) grown on MgO(001) , 2008 .

[55]  S. Chockalingam,et al.  Superconducting properties and Hall effect of epitaxial NbN thin films , 2008, 0804.2945.

[56]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.

[57]  S. Pantelides,et al.  Structure and interaction of point defects in transition-metal nitrides , 2007 .

[58]  Ivan Petrov,et al.  Raman scattering from epitaxial TaNx (0.94 ≤x≤ 1.37) layers grown on MgO(001) , 2007 .

[59]  B. Yao,et al.  Raman scattering investigation of nanocrystalline δ-TiNx synthesized by solid-state reaction , 2006 .

[60]  H. Uhm,et al.  Production of nanocrystalline titanium nitride powder by atmospheric microwave plasma torch in hydrogen/nitrogen gas , 2005 .

[61]  H. Seo,et al.  Epitaxial and polycrystalline HfNx (0.8⩽x⩽1.5) layers on MgO(001): Film growth and physical properties , 2005 .

[62]  S. Logothetidis,et al.  Surface kinetics and subplantation phenomena affecting the texture, morphology, stress, and growth evolution of titanium nitride films , 2004 .

[63]  Yan Yan,et al.  Reduction‐Nitridation Synthesis of Titanium Nitride Nanocrystals , 2003 .

[64]  H. Okamoto,et al.  Preparation of superconducting epitaxial thin films of transition metal nitrides on silicon wafers by molecular beam epitaxy , 2002 .

[65]  I. Petrov,et al.  Phase composition and microstructure of polycrystalline and epitaxial TaNx layers grown on oxidized Si(001) and MgO(001) by reactive magnetron sputter deposition , 2002 .

[66]  D. Gall,et al.  Vibrational modes in epitaxial Ti 1 − x Sc x N ( 001 ) layers: An ab initio calculation and Raman spectroscopy study , 2001 .

[67]  P. Febvre,et al.  NbN multilayer technology on R-plane sapphire , 2001 .

[68]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[69]  J. Yarwood,et al.  Raman microscopic studies of PVD hard coatings , 1999 .

[70]  D. Cahill,et al.  Morphology of epitaxial TiN(001) grown by magnetron sputtering , 1997 .

[71]  E. Janzén,et al.  Growth and electronic properties of epitaxial TiN thin films on 3C-SiC(001) and 6H-SiC(0001) substrates by reactive magnetron sputtering , 1996 .

[72]  Lars Hultman,et al.  Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering , 1995 .

[73]  R. Vispute,et al.  Epitaxial Tin Films on Sapphire and Silicon-on-Sapphire by Pulsed Laser Deposition , 1995 .

[74]  L. Hultman,et al.  Characterization of misfit dislocations in epitaxial (001)-oriented TiN, NbN, VN, and (Ti,Nb) N film heterostructures by transmission electron microscopy , 1994 .

[75]  C. Bamberger,et al.  Raman Spectroscopic Observation of Laser-Induced Oxidation of Transition-Metal Borides, Carbides, and Nitrides , 1989 .

[76]  M. Tonouchi,et al.  Epitaxial growth of NbN on an ultrathin MgO/semiconductor system , 1987 .

[77]  S. Karlsson,et al.  Mechanisms of reactive sputtering of titanium nitride and titanium carbide III: Influence of substrate bias on composition and structure , 1983 .

[78]  E. J. Mittemeijer,et al.  Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening , 1982 .

[79]  R. Currat,et al.  Phonon anomalies in transition metal nitrides: δ-NbN , 1979 .

[80]  R. Kaiser,et al.  Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN , 1978 .

[81]  O. Dietrich,et al.  Phonon anomalies in transition-metal nitrides: ZrN , 1978 .

[82]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .