Current approaches to predicting molecular organic crystal structures

Considerable effort has been invested in developing methods for predicting the crystalline structure(s) of a given compound, ideally starting from no more than a structural formula of the molecule. Reliable computational predictions would be of great value in many areas of materials chemistry, from the design of materials with novel properties to the avoidance of an undesirable change of form in the late stages of development of an industrially important molecule. Methods used in crystal structure prediction are reviewed, with particular focus on the most common approach – global lattice energy minimization. Progress and current limitations are highlighted, with reference to examples from the literature and the results of blind tests organized to objectively monitor developments in the field.

[1]  G. Pawley,et al.  On the lattice dynamics of solid nitrogen , 1974 .

[2]  A. Stone,et al.  Electrostatic predictions of shapes and properties of Van der Waals molecules , 1986 .

[4]  A. Dzyabchenko Theoretical structures of crystalline benzene: The search for a global minimum of the lattice energy in four space groups , 1984 .

[5]  William Jones,et al.  Beyond the isotropic atom model in crystal structure prediction of rigid molecules: atomic multipoles versus point charges , 2005 .

[6]  F. Leusen Crystal Structure Prediction of Diastereomeric Salts: A Step toward Rationalization of Racemate Resolution , 2003 .

[7]  James A. Chisholm,et al.  COMPACK: a program for identifying crystal structure similarity using distances , 2005 .

[8]  Frank J. J. Leusen,et al.  A study of different approaches to the electrostatic interaction in force field methods for organic crystals , 2003 .

[9]  Kroon,et al.  Structure predictions allowing more than one molecule in the asymmetric unit , 2000, Acta crystallographica. Section B, Structural science.

[10]  B. Kariuki,et al.  Characterization of complicated new polymorphs of chlorothalonil by X-ray diffraction and computer crystal structure prediction. , 2004, Journal of the American Chemical Society.

[11]  W. Motherwell Crystal Structure Prediction and the Cambridge Structural Database , 2001 .

[12]  William Jones,et al.  An Assessment of Lattice Energy Minimization for the Prediction of Molecular Organic Crystal Structures , 2004 .

[13]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[14]  Jan Kroon,et al.  Upack program package for crystal structure prediction: Force fields and crystal structure generation for small carbohydrate molecules , 1999, J. Comput. Chem..

[15]  J. Dunitz Are crystal structures predictable? , 2003, Chemical communications.

[16]  Sarah L. Price,et al.  A first principles prediction of the crystal structure of C6Br2ClFH2 , 2008 .

[17]  J. Chisholm,et al.  An ab initio study of observed and hypothetical polymorphs of glycine , 2005 .

[18]  T. C. Lewis,et al.  Which organic crystal structures are predictable by lattice energy minimisation?Electronic supplementary information (ESI) available: downloadable version of Table 2. See http://www.rsc.org/suppdata/ce/b1/b108135g/ , 2001 .

[19]  E. Venuti,et al.  Pressure-induced phase transitions in 9,10-anthracene derivatives: anthraquinone , 1995 .

[20]  A. Gavezzotti A Molecular Dynamics Test of the Different Stability of Crystal Polymorphs under Thermal Strain , 2000 .

[21]  Donald E. Williams,et al.  Molecular packing analysis: prediction of experimental crystal structures of benzene starting from unreasonable initial structures , 1994 .

[22]  W. D. Sam Motherwell,et al.  An Experiment in Crystal Structure Prediction by Popular Vote , 2006 .

[23]  Jaroslaw Pillardy,et al.  Conformation-Family Monte Carlo (CFMC): An Efficient Computational Method for Identifying the Low-Energy States of a Macromolecule , 2000 .

[24]  J. Bauer,et al.  Ritonavir: An Extraordinary Example of Conformational Polymorphism , 2001, Pharmaceutical Research.

[25]  A. Dzyabchenko,et al.  Theoretical structure of crystalline benzene. III. Hydrostatic pressure effect , 1986 .

[26]  Michele Parrinello,et al.  The thermal stability of lattice-energy minima of 5-fluorouracil: metadynamics as an aid to polymorph prediction. , 2008, The journal of physical chemistry. B.

[27]  W. Mooij,et al.  Multipoles versus charges in the 1999 crystal structure prediction test , 2001 .

[28]  J. Novoa,et al.  A First-Principles Computation of the Low-Energy Polymorphic Forms of the Acetic Acid Crystal. A Test of the Atom−Atom Force Field Predictions , 2001 .

[29]  P. Karamertzanis,et al.  Is the Induction Energy Important for Modeling Organic Crystals? , 2008, Journal of chemical theory and computation.

[30]  H. Scheraga,et al.  Derivation of a New Force Field for Crystal-Structure Prediction Using Global Optimization: Nonbonded Potential Parameters for Hydrocarbons and Alcohols , 2003 .

[31]  Adam Liwo,et al.  Diffusion Equation and Distance Scaling Methods of Global Optimization: Applications to Crystal Structure Prediction , 1998 .

[32]  Thomas Lengauer,et al.  Prediction of crystal structures of organic molecules , 1999 .

[33]  D. Sorescu,et al.  Assessing a Generalized CHNO Intermolecular Potential through ab Initio Crystal Structure Prediction , 2004 .

[34]  T. C. Lewis,et al.  A third blind test of crystal structure prediction. , 2005, Acta crystallographica. Section B, Structural science.

[35]  G. Day,et al.  Predicting stoichiometry and structure of solvates. , 2010, Chemical communications.

[36]  D. E. Williams,et al.  Ab initio molecular packing analysis , 1996 .

[37]  G. Desiraju,et al.  Crystal structure prediction of aminols: advantages of a supramolecular synthon approach with experimental structures. , 2005, Journal of the American Chemical Society.

[38]  G. B. Suffritti,et al.  Lattice dynamics in crystals of ‘rigid’ hydrocarbons , 1973 .

[39]  A. Laio,et al.  Simulation of structural phase transitions by metadynamics , 2004, cond-mat/0411559.

[40]  G. Scuseria,et al.  An ab Initio Study of Solid Nitromethane, HMX, RDX, and CL20: Successes and Failures of DFT , 2004 .

[41]  S. Price The computational prediction of pharmaceutical crystal structures and polymorphism. , 2004, Advanced drug delivery reviews.

[42]  A. Gavezzotti,et al.  X-ray diffraction and molecular simulation study of the crystalline and liquid states of succinic anhydride. , 2002, Chemistry.

[43]  Bouke P. van Eijck,et al.  Ab initio crystal structure predictions for flexible hydrogen-bonded molecules. Part III. Effect of lattice vibrations , 2001, J. Comput. Chem..

[44]  Sarah L. Price,et al.  Toward More Accurate Model Intermolecular Potentials for Organic Molecules , 2007 .

[45]  M. Parrinello,et al.  Exploring polymorphism: the case of benzene. , 2005, Angewandte Chemie.

[46]  E. Venuti,et al.  Inherent structures of crystalline pentacene , 2003 .

[47]  John Maddox,et al.  Waves caused by extreme dilution , 1988, Nature.

[48]  G. Day,et al.  Realizing Predicted Crystal Structures at Extreme Conditions: The Low-Temperature and High-Pressure Crystal Structures of 2-Chlorophenol and 4-Fluorophenol , 2005 .

[49]  Valery A. Davydov,et al.  A Theoretical Study of the Pressure-Induced Dimerization of C60 Fullerene , 1999 .

[50]  A. Gavezzotti,et al.  Molecular Shape and Crystal Packing: a Study of C12H12 Isomers, Real and Imaginary , 2000 .

[51]  David J. Willock,et al.  The relaxation of molecular crystal structures using a distributed multipole electrostatic model , 1995, J. Comput. Chem..

[52]  A. Gavezzotti,et al.  Generation of possible crystal structures from molecular structure for low-polarity organic compounds , 1991 .

[53]  G. Day,et al.  Sensitivity of morphology prediction to the force field: Paracetamol as an example , 2004 .

[54]  A. Gavezzotti,et al.  Calculation of Intermolecular Interaction Energies by Direct Numerical Integration over Electron Densities. 2. An Improved Polarization Model and the Evaluation of Dispersion and Repulsion Energies , 2003 .

[55]  A. V. Dzyabchenko Method of crystal-structure similarity searching , 1994 .

[56]  P. Bennema,et al.  The attachment energy as a habit controlling factor: I. Theoretical considerations , 1980 .

[57]  Constantinos C. Pantelides,et al.  Optimal Site Charge Models for Molecular Electrostatic Potentials , 2004 .

[58]  A I Kitaigorodskii,et al.  Organic chemical crystallography , 1961 .

[59]  C. Faerman,et al.  A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon , 1985 .

[60]  A. Spek,et al.  Hypothetical Crystal Structures of Benzene at 0 and 30 kbar , 1998 .

[61]  V. Bazterra,et al.  Modified genetic algorithm to model crystal structures. II. Determination of a polymorphic structure of benzene using enthalpy minimization , 2002 .

[62]  R. Gdanitz,et al.  Ab Initio prediction of possible crystal structures for general organic molecules , 1992 .

[63]  G. Day Crystal structure prediction , 2012 .

[64]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[65]  G. Pawley Analytic formulation of molecular lattice dynamics based on pair potential functions , 1972 .

[66]  Sarah L Price,et al.  A nonempirical anisotropic atom-atom model potential for chlorobenzene crystals. , 2003, Journal of the American Chemical Society.

[67]  G. Day,et al.  Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals. , 2010, Physical Chemistry, Chemical Physics - PCCP.

[68]  T. Steiner Frequency of Z' values in organic and organometallic crystal structures. , 2000, Acta crystallographica. Section B, Structural science.

[69]  P Verwer,et al.  A test of crystal structure prediction of small organic molecules. , 2000, Acta crystallographica. Section B, Structural science.

[70]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[71]  S. J. Cyvin,et al.  Structure and barrier of internal rotation of biphenyl derivatives in the gaseous state: Part 1. The molecular structure and normal coordinate analysis of normal biphenyl and pedeuterated biphenyl , 1985 .

[72]  A. Gavezzotti,et al.  Ten years of experience in polymorph prediction: what next? , 2002 .

[73]  Constantinos C. Pantelides,et al.  Ab initio crystal structure prediction—I. Rigid molecules , 2005, J. Comput. Chem..

[74]  William Jones,et al.  Prediction and observation of isostructurality induced by solvent incorporation in multicomponent crystals. , 2006, Journal of the American Chemical Society.

[75]  Graeme M. Day,et al.  Elastic Constant Calculations for Molecular Organic Crystals , 2001 .

[76]  K. Brose Lattice Dynamics of Molecular Crystals. , 1988 .

[77]  P. Bennema,et al.  Crystal growth and morphology: New developments in an integrated Hartman-Perdok-connected net-roughening transition theory, supported by computer simulations , 2004 .

[78]  Ulli Englert,et al.  Prediction of crystal structures , 1996 .

[79]  W. G. Perdok,et al.  On the relations between structure and morphology of crystals. I , 1955 .

[80]  M. Sanquer,et al.  Structural phase transition in polyphenyls. VIII. The modulated structure of phase III of biphenyl (T∝ 20 K) from neutron diffraction data , 1983 .

[81]  Victor E Bazterra,et al.  A Distributed Computing Method for Crystal Structure Prediction of Flexible Molecules:  An Application to N-(2-Dimethyl-4,5-dinitrophenyl) Acetamide. , 2007, Journal of chemical theory and computation.

[82]  F. Leusen,et al.  A major advance in crystal structure prediction. , 2008, Angewandte Chemie.

[83]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[84]  P. Karamertzanis,et al.  A computationally inspired investigation of the solid forms of (R)-1-phenylethylammonium-(S)-2-phenylbutyrate. , 2009, Chirality.

[85]  Jan Kroon,et al.  TRANSFERABLE AB INITIO INTERMOLECULAR POTENTIALS. 2. VALIDATION AND APPLICATION TO CRYSTAL STRUCTURE PREDICTION , 1999 .

[86]  A. Brillante,et al.  LATTICE DYNAMICS OF HALOGENATED ANTHRACENE DERIVATIVES UNDER PRESSURE , 1994 .

[87]  S. Chemburkar,et al.  Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development , 2000 .

[88]  Thomas Lengauer,et al.  A Discrete Algorithm for Crystal Structure Prediction of Organic Molecules , 1997 .

[89]  G. Day,et al.  A strategy for predicting the crystal structures of flexible molecules: the polymorphism of phenobarbital. , 2007, Physical chemistry chemical physics : PCCP.

[90]  Aleksandr Isaakovich Kitaĭgorodskiĭ,et al.  Molecular Crystals and Molecules , 1973 .

[91]  E. Venuti,et al.  Pressure and temperature effects in lattice dynamics: the case of naphthalene , 1995 .

[92]  Gautam R. Desiraju,et al.  The Supramolecular Synthon Approach to Crystal Structure Prediction , 2002 .

[93]  M. Colapietro,et al.  Molecular structure of p-diaminobenzene in the gaseous phase and in the crystal , 1987 .

[94]  Sarah L Price,et al.  Toward the Prediction of Organic Hydrate Crystal Structures. , 2007, Journal of chemical theory and computation.

[95]  A. Pertsin,et al.  The Atom-Atom Potential Method: Applications to Organic Molecular Solids , 1987 .

[96]  G. Day,et al.  Dynamics in crystals of rigid organic molecules: contrasting the phonon frequencies calculated by molecular dynamics with harmonic lattice dynamics for imidazole and 5-azauracil , 2004 .

[97]  E. Venuti,et al.  Quasi harmonic lattice dynamics: the phase diagram of benzene , 1996 .

[98]  J. Sherwood,et al.  Explanation for the Supersaturation-Dependent Morphology of Monoclinic Paracetamol , 2002 .

[99]  Sarah L Price,et al.  Modeling the interplay of inter- and intramolecular hydrogen bonding in conformational polymorphs. , 2008, The Journal of chemical physics.

[100]  A. Warshel,et al.  Examination of intramolecular potential surfaces of flexible conjugated molecules by calculation of crystal structures. equilibrium geometries of chalc , 1974 .

[101]  Tejender S. Thakur,et al.  Significant progress in predicting the crystal structures of small organic molecules--a report on the fourth blind test. , 2009, Acta crystallographica. Section B, Structural science.

[102]  James R. Holden,et al.  Prediction of possible crystal structures for C‐, H‐, N‐, O‐, and F‐containing organic compounds , 1993, J. Comput. Chem..

[103]  M. Alderton,et al.  Distributed multipole analysis Methods and applications , 1985 .

[104]  G. Day,et al.  Crystal packing predictions of the alpha-amino acids: methods assessment and structural observations , 2010 .

[105]  Sarah L. Price,et al.  Quantifying intermolecular interactions and their use in computational crystal structure prediction , 2004 .

[106]  Julian D. Gale,et al.  Calculation of Attachment Energies and Relative Volume Growth Rates As an Aid to Polymorph Prediction , 2005 .

[107]  Jan Kroon,et al.  Crystal structure predictions for acetic acid , 1998, J. Comput. Chem..

[108]  Sarah L. Price,et al.  Role of electrostatic interactions in determining the crystal structures of polar organic molecules. A distributed multipole study , 1996 .

[109]  F. Leusen,et al.  The ab initio prediction of yet unknown molecular crystal structures by solving the crystal packing problem , 1994 .

[110]  D. E. Williams,et al.  Nonbonded potentials for azahydrocarbons: the importance of the Coulombic interaction , 1984 .

[111]  Bouke P. van Eijck,et al.  Transferable ab Initio Intermolecular Potentials. 1. Derivation from Methanol Dimer and Trimer Calculations , 1999 .

[112]  S. Walmsley Lattice Vibrations and Elastic Constants of Molecular Crystals in the Pair Potential Approximation , 1968 .

[113]  S. Price,et al.  Use of molecular overlap to predict intermolecular repulsion in N ··· H—O hydrogen bonds , 1998 .

[114]  A. Gavezzotti,et al.  Empirical intermolecular potentials for organic crystals: the `6‐exp' approximation revisited , 1993 .

[115]  S. Price,et al.  The errors in lattice energy minimisation studies: sensitivity to experimental variations in the molecular structure of paracetamol , 2000 .

[116]  Donald E. Williams,et al.  Lone-pair electronic effects on the calculated ab initio SCF-MO electric potential and the crystal structures of azabenzenes , 1983 .

[117]  G. Day,et al.  The prediction, morphology, and mechanical properties of the polymorphs of paracetamol. , 2001, Journal of the American Chemical Society.

[118]  Sarah L. Price,et al.  Energy minimization of crystal structures containing flexible molecules , 2006 .

[119]  Jan Kroon,et al.  Ab initio crystal structure predictions for flexible hydrogen‐bonded molecules. Part II. Accurate energy minimization , 2001, J. Comput. Chem..

[120]  A. Stone,et al.  Atom–atom potentials from ab initio calculations , 2007 .

[121]  Jan Kroon,et al.  Crystal Structure Prediction for Six Monosaccharides Revisited , 2001 .

[122]  R. Gdanitz Prediction of molecular crystal structures by Monte Carlo simulated annealing without reference to diffraction data , 1992 .

[123]  J. Dunitz,et al.  Towards a Grammar of Crystal Packing , 1994 .

[124]  Peddy Vishweshwar,et al.  The predictably elusive form II of aspirin. , 2005, Journal of the American Chemical Society.

[125]  A. Gavezzotti Towards a realistic model for the quantitative evaluation of intermolecular potentials and for the rationalization of organic crystal structures. Part I. Philosophy , 2003 .

[126]  Sarah L Price,et al.  Can the Formation of Pharmaceutical Cocrystals Be Computationally Predicted? 2. Crystal Structure Prediction. , 2009, Journal of chemical theory and computation.

[127]  G. Day,et al.  Atomistic calculations of phonon frequencies and thermodynamic quantities for crystals of rigid organic molecules , 2003 .

[128]  P. Hartman The attachment energy as a habit controlling factor: III. Application to corundum , 1980 .

[129]  M. Alderton,et al.  Distributed multipole analysis , 2006 .

[130]  Julio C. Facelli,et al.  Modified genetic algorithms to model cluster structures in medium-sized silicon clusters: Si18-Si60 , 2006 .

[131]  Patrick W. Fowler,et al.  A model for the geometries of Van der Waals complexes , 1985 .

[132]  M. Neumann Tailor-made force fields for crystal-structure prediction. , 2008, The journal of physical chemistry. B.

[133]  P. Ugliengo,et al.  B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals , 2008 .

[134]  G. Day,et al.  Towards prediction of stoichiometry in crystalline multicomponent complexes. , 2008, Chemistry.

[135]  Harold A Scheraga,et al.  Exercises in prognostication: crystal structures and protein folding. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[136]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[137]  Lattice dynamical calculations on azabenzene crystals: The distributed dipole model , 1981 .

[138]  Marc-Antoine Perrin,et al.  Energy ranking of molecular crystals using density functional theory calculations and an empirical van der waals correction. , 2005, The journal of physical chemistry. B.

[139]  Sarah L. Price,et al.  A systematic intermolecular potential method applied to chlorine , 1990 .

[140]  V. Bazterra,et al.  Modified genetic algorithm to model crystal structures. I. Benzene, naphthalene and anthracene , 2002 .

[141]  Julio C. Facelli,et al.  Modified genetic algorithms to model cluster structures in medium-size silicon clusters , 2004 .

[142]  Joannis Apostolakis,et al.  Crystal structure prediction by data mining , 2003 .

[143]  J. Dunitz,et al.  Conformational polymorphism of dimethyl 3,6-dichloro-2,5-dihydroxyterephthalate. II, Structural, thermodynamic, kinetic and mechanistic aspects of phase transformations among the three crystal forms , 1990 .

[144]  Jaroslaw Pillardy,et al.  Conformation-family Monte Carlo: A new method for crystal structure prediction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[145]  Jaroslaw Pillardy,et al.  Global optimization-based method for deriving intermolecular potential parameters for crystals , 2003 .

[146]  Jan Kroon,et al.  Ab Initio Crystal Structure Predictions for Flexible Hydrogen-Bonded Molecules , 2000 .

[147]  Jan Kroon,et al.  Fast clustering of equivalent structures in crystal structure prediction , 1997, J. Comput. Chem..

[148]  J. Maddox Crystals from first principles , 1988, Nature.

[149]  A. Gavezzotti Towards a realistic model for the quantitative evaluation of intermolecular potentials and for the rationalization of organic crystal structures. Part II. Crystal energy landscapes , 2003 .

[150]  M. Simonetta,et al.  The molecular structure of biphenyl in the gas and solid phases , 1968 .

[151]  Robin Taylor,et al.  Comparison of conformer distributions in the crystalline state with conformational energies calculated by ab initio techniques , 1996, J. Comput. Aided Mol. Des..

[152]  Frank J. J. Leusen,et al.  Computer Simulation to Predict Possible Crystal Polymorphs , 2007 .

[153]  Ulf Ryde,et al.  Comparison of methods for deriving atomic charges from the electrostatic potential and moments , 1998, J. Comput. Chem..

[154]  Henry Margenau,et al.  Theory of intermolecular forces , 1969 .

[155]  A. Gavezzotti,et al.  Polymorphic Forms of Organic Crystals at Room Conditions: Thermodynamic and Structural Implications , 1995 .

[156]  Julio C. Facelli,et al.  Modified genetic algorithm to model crystal structures: III. Determination of crystal structures allowing simultaneous molecular geometry relaxation , 2004 .

[157]  S. Colson,et al.  A critical evaluation of isotropic potential functions for chlorine , 1977 .

[158]  W. Busing Modeling the phase change in crystalline biphenyl by using a temperature‐dependent potential , 1983 .

[159]  H. Scheraga,et al.  Model for the crystal packing and conformational changes of biphenyl in incommensurate phase transitions. , 2004, Acta crystallographica. Section B, Structural science.

[160]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[161]  The,et al.  A NEW LAW OF CRYSTAL MORPHOLOGY EXTENDING THE LAW OF BRAVAIS , 2007 .

[162]  Sarah L Price,et al.  Crystal structure prediction of small organic molecules: a second blind test. , 2002, Acta crystallographica. Section B, Structural science.

[163]  A. Gavezzotti Structure and intermolecular potentials in molecular crystals , 2002 .

[164]  G. Day,et al.  A study of the known and hypothetical crystal structures of pyridine: why are there four molecules in the asymmetric unit cell? , 2002 .

[165]  S. Price,et al.  Validation of a search technique for crystal structure prediction of flexible molecules by application to piracetam. , 2005, Acta crystallographica. Section B, Structural science.

[166]  Nathan J. Harris and,et al.  Ab Initio Density Functional Computations of Conformations and Bond Dissociation Energies for Hexahydro-1,3,5-trinitro-1,3,5-triazine , 1997 .

[167]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[168]  Sarah L. Price,et al.  Toward Crystal Structure Prediction for Conformationally Flexible Molecules: The Headaches Illustrated by Aspirin , 2004 .

[169]  P. Karamertzanis,et al.  Spontaneous Resolution of Enantiomers by Crystallization: Insights from Computed Crystal Energy Landscapes , 2010 .

[170]  A. Gavezzotti Calculation of Intermolecular Interaction Energies by Direct Numerical Integration over Electron Densities. I. Electrostatic and Polarization Energies in Molecular Crystals , 2002 .

[171]  H. Scheraga,et al.  Derivation of a new force field for crystal-structure prediction using global optimization: Nonbonded potential parameters for amines, imidazoles, amides, and carboxylic acids , 2004 .

[172]  F. Leusen,et al.  Rationalization of Racemate Resolution: Predicting Spontaneous Resolution through Crystal Structure Prediction , 2007 .

[173]  S. Price,et al.  A Systematic Nonempirical Method of Deriving Model Intermolecular Potentials for Organic Molecules: Application To Amides , 2000 .

[174]  Sarah L Price,et al.  Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. , 2010, Physical chemistry chemical physics : PCCP.

[175]  E. Halac,et al.  Lattice dynamics, thermodynamic functions, and phase transitions of p‐dichloro‐ and 1,2,4,5‐tetrachlorobenzene , 1978 .