Air‐Stable Solution‐Processed Hybrid Transistors with Hole and Electron Mobilities Exceeding 2 cm2 V−1 s−1

An alternative approach for the development of high-performance unipolar and ambipolar thin-film transistors and integrated circuits based on hybrid heterostructures comprising a phase-separated solution processed p-type organic small-molecule:polymer semicondcutor blend and a spray-coated n-type ZnO semiconductor layer is demonstrated.

[1]  T. Anthopoulos,et al.  High‐Performance Polymer‐Small Molecule Blend Organic Transistors , 2009 .

[2]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[3]  Hideo Hosono,et al.  P-type electrical conduction in transparent thin films of CuAlO2 , 1997, Nature.

[4]  Antonio Facchetti,et al.  Semiconductors for organic transistors , 2007 .

[5]  Tomoji Kawai,et al.  p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping , 1999 .

[6]  Randy Hoffman,et al.  High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer , 2005 .

[7]  Yongtaek Hong,et al.  DEVICE RESEARCH CONFERENCE , 2011 .

[8]  H. Hosono Recent progress in transparent oxide semiconductors: Materials and device application , 2007 .

[9]  John E. Anthony,et al.  High-performance organic integrated circuits based on solution processable polymer-small molecule blends , 2008 .

[10]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[11]  Koki Yano,et al.  Ambipolar field-effect transistor based on organic-inorganic hybrid structure , 2007 .

[12]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[13]  John E. Anthony,et al.  Fast, simple ZnO/organic CMOS integrated circuits , 2009 .

[14]  Anderson Janotti,et al.  Why nitrogen cannot lead to $p$-type conductivity in ZnO , 2009 .

[15]  Paul H. Wöbkenberg,et al.  Electronic properties of ZnO field-effect transistors fabricated by spray pyrolysis in ambient air , 2009 .

[16]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[17]  H. Katz,et al.  Solution‐Deposited Zinc Oxide and Zinc Oxide/Pentacene Bilayer Transistors: High Mobility n‐Channel, Ambipolar, and Nonvolatile Devices , 2008 .

[18]  Hong-Gyu Kim,et al.  Oxide TFT with multilayer gate insulator for backplane of AMOLED device , 2008 .

[19]  R. Street,et al.  Effects of molecular oxygen and ozone on polythiophene-based thin-film transistors , 2007 .

[20]  Sankar Subramanian,et al.  Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. , 2008, Journal of the American Chemical Society.

[21]  Shengbai Zhang,et al.  p-type behavior in nominally undoped ZnO thin films by oxygen plasma growth , 2006 .

[22]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[23]  James Kirkpatrick,et al.  Systematic improvement in charge carrier mobility of air stable triarylamine copolymers. , 2009, Journal of the American Chemical Society.

[24]  S. Im,et al.  Threshold voltage control in dual gate ZnO-based thin-film transistors operating at 5 V , 2008 .

[25]  S. Yun,et al.  Pentacene Thin-Film Transistors and Inverters with Dual-Gate Structure , 2006 .

[26]  J. Baumbach,et al.  Hybrid organic/inorganic complementary circuits , 1996 .

[27]  R. M. Wolf,et al.  A ferroelectric transparent thin‐film transistor , 1996 .

[28]  Michael A. Haase,et al.  Recent Progress in Organic Electronics: Materials, Devices, and Processes , 2004 .

[29]  Paul H. Wöbkenberg,et al.  High mobility n-channel organic field-effect transistors based on soluble C-60 and C-70 fullerene derivatives , 2008 .

[30]  Paul H. Wöbkenberg,et al.  High‐Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere , 2009 .