Coactivation of leg reflexes in the stick insect

Each leg of a standing stick insect acts as a height controller. The leg contains several joints. Most of these joints are known to be controlled by feedback loops which are the basis of resistance reflexes (review Bässler 1983). This leads to the question of whether the resistance reflex of the whole leg can be understood as a simple, vectorial sum of the individual reflexes provided by the different joints, or whether additional properties emerge by simultaneous stimulation of several joints. Force measurements were performed while passively moving the middle leg tarsus of a fixed stick insect (Carausius morosus) stepwise to different positions. From the dynamic and static forces the torques developed by each joint were calculated. They were compared with the torques developed when only a single joint was moved by the same amount. The comparison shows that for a large range of positions there are no differences between both situations. Differences occur in two cases. First, the muscle system controlling the coxa-trochanter joint seems to be more strongly excited when the entire leg is moved than when only the one joint is moved. This change increases the linearity of the whole system for small deviations from the zero position. Second, the torque developed by the extensor tibiae system for negative steps (corresponding to increased body height), and the levator of coxa and trochanter for positive steps, decreases rather than increases when the whole leg is moved to extreme positions. This contributes to a decrease in the slope of the force-height characteristic and thus to a more non-linear behaviour of the whole system for the extreme positions. It is well known that the amplification factors of resistance reflexes in the leg show a large variation (Bässler 1972a; Kittmann 1991). Our results indicate that any change of the amplification factor influences the reflexes in all leg joints in the same way.

[1]  R. Kittmann,et al.  GAIN CONTROL IN THE FEMUR-TIBIA FEEDBACK SYSTEM OF THE STICK INSECT , 1991 .

[2]  G. Wendler,et al.  The reflex behaviour and innervation of the tergo-coxal retractor muscles of the stick insectCarausius morosus , 1981, Journal of comparative physiology.

[3]  J. Schmitz Properties of the feedback system controlling the coxa-trochanter joint in the stick insect Carausius morosus , 1986, Biological Cybernetics.

[4]  D. Graham Influence of Coxa-Thorax Joint Receptors on Retractor Motor Output During Walking in Carausius Morosus , 1985 .

[5]  H. Cruse The function of the legs in the free walking stick insect,Carausius morosus , 1976, Journal of comparative physiology.

[6]  W. Davis,et al.  Neuronal control of locomotion in the lobster,Homarus americanus , 2004, Journal of comparative physiology.

[7]  F. Delcomyn Computer aided analysis of a locomotor leg reflex in the cockroach Periplaneta americana , 1971, Zeitschrift für vergleichende Physiologie.

[8]  G. Wendler,et al.  Körperhaltung bei der Stabheuschrecke: Ihre Beziehung zur Schwereorientierung und Mechanismen ihrer Regelung , 1972 .

[9]  F. Clarac Motor Coordination in Crustacean Limbs , 1977 .

[10]  J. Schmitz The depressor trochanteris motoneurones and their role in the coxo-trochanteral feedback loop in the stick insect Carausius morosus , 1986, Biological Cybernetics.

[11]  S. Kemmerling,et al.  Regulation of the body-substrate-distance in the stick insect: Step responses and modelling the control system , 2004, Biological Cybernetics.

[12]  W. Davis,et al.  Neuronal control of locomotion in the lobsterHomarus americanus , 2004, Journal of comparative physiology.

[13]  Ulrich Bässler Der „Kniesehnenreflex” bei Carausius morosus: Übergangsfunktion und Frequenzgang , 2004, Kybernetik.

[14]  G. Hoyle,et al.  Identified Neurons and Behavior of Arthropods , 1977, Springer US.

[15]  D. Varjú,et al.  Regulation of the body-substrat-distance in the stick insect: Responses to sinusoidal stimulation , 2004, Biological Cybernetics.

[16]  U. Bässler Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus: Reaktionen auf passive Bewegungen der Tibia , 2004, Kybernetik.

[17]  U. Bässler Sensory control of leg movement in the stick insect Carausius morosus , 1977, Biological Cybernetics.

[18]  Ulrich Bässler,et al.  Proprioreceptoren am Subcoxal-und Femur-Tibia-Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung , 1965, Kybernetik.

[19]  H. Cruse The control of body position in the stick insect (Carausius morosus), when walking over uneven surfaces , 1976, Biological Cybernetics.

[20]  G. Wendler Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen , 1964, Zeitschrift für vergleichende Physiologie.

[21]  William J. Davis,et al.  Neuronal control of locomotion in the lobsterHomarus americanus , 1978, Journal of comparative physiology.

[22]  H. Cruse,et al.  Control of body position of a stick insect standing on uneven surfaces , 1989, Biological Cybernetics.

[23]  J. Schmitz Control of the leg joints in stick insects: Differences in the reflex properties between the standing and the walking states. , 1985 .

[24]  H. Cruse,et al.  Systemanalytische Untersuchung eines aufgeschnittenen Regelkreises, der die Beinstellung der Stabheuschrecke Carausius morosus kontrolliert: Kraftmessungen an den Antagonisten Flexor und Extensor tibiae , 1977, Biological Cybernetics.

[25]  Professor Dr. Ulrich Bässler Neural Basis of Elementary Behavior in Stick Insects , 1983, Studies of Brain Function.