Taming the Electromagnetic Boundaries via Metasurfaces: From Theory and Fabrication to Functional Devices

As two-dimensional metamaterials, metasurfaces have received rapidly increasing attention from researchers all over the world. Unlike three-dimensional metamaterials, metasurfaces can be utilized to control the electromagnetic waves within one infinitely thin layer, permitting substantial advantages, such as easy fabrication, low cost, and high degree of integration. This paper reviews the history and recent development of metasurfaces, with particular emphasis on the theory and applications relating to the frequency response, phase shift, and polarization state control. Based on the current status of various applications, the challenges and future trends of metasurfaces are discussed.

[1]  M. Rahmani,et al.  Realization of Variable Three‐Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability , 2012, Advanced materials.

[2]  Yuan Lin,et al.  A tunable hybrid metamaterial absorber based on vanadium oxide films , 2012 .

[3]  Hui Cao,et al.  Coherent perfect absorbers: Time-reversed lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[4]  Xiaoliang Ma,et al.  A planar chiral meta-surface for optical vortex generation and focusing , 2015, Scientific Reports.

[5]  T. Tahmasebi,et al.  Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization , 2011 .

[6]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[7]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[8]  Qi Jie Wang,et al.  Active Focal Length Control of Terahertz Slitted Plane Lenses by Magnetoplasmons , 2012, Plasmonics.

[9]  Xiangang Luo,et al.  A Low-RCS and High-Gain Partially Reflecting Surface Antenna , 2014, IEEE Transactions on Antennas and Propagation.

[10]  N. Han,et al.  Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. , 2011, Optics express.

[11]  Tomislav Debogovic,et al.  Array-Fed Partially Reflective Surface Antenna With Independent Scanning and Beamwidth Dynamic Control , 2014, IEEE Transactions on Antennas and Propagation.

[12]  Eric Plum,et al.  Coherent control of Snell's law at metasurfaces. , 2014, Optics express.

[13]  Minghui Hong,et al.  Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency. , 2011, Optics express.

[14]  D. R. Chowdhury,et al.  Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales , 2015 .

[15]  Changtao Wang,et al.  Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency , 2013 .

[16]  Sungjoon Lim,et al.  Conformal metamaterial absorber for curved surface. , 2013, Optics express.

[17]  Seokho Yun,et al.  Near-ideal optical metamaterial absorbers with super-octave bandwidth. , 2014, ACS nano.

[18]  Ji Zhou,et al.  An extremely broad band metamaterial absorber based on destructive interference. , 2011, Optics express.

[19]  L. Robinson,et al.  Meander-line polarizer , 1973 .

[20]  Mark L Brongersma,et al.  Plasmonic beaming and active control over fluorescent emission. , 2011, Nature communications.

[21]  Changtao Wang,et al.  Deep sub-wavelength imaging lithography by a reflective plasmonic slab. , 2013, Optics express.

[22]  D. Werner,et al.  Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates , 2014, Scientific Reports.

[23]  Xiangang Luo,et al.  Polarization-independent broadband terahertz chiral metamaterials on flexible substrate , 2014 .

[24]  Ekmel Ozbay,et al.  Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture , 2004 .

[25]  Xiaoliang Ma,et al.  Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. , 2012, Optics express.

[26]  Fadi Issam Baida,et al.  90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays. , 2007, Optics letters.

[27]  Xiang Zhang,et al.  Surface plasmon interference nanolithography. , 2005, Nano letters.

[28]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[29]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[30]  Yu-Hui Chen,et al.  Wavefront shaping of infrared light through a subwavelength hole , 2012, Light: Science & Applications.

[31]  Xiangang Luo,et al.  Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. , 2010, Nature communications.

[32]  H. Severin Nonreflecting absorbers for microwave radiation , 1956 .

[33]  V Fusco,et al.  325 GHz Single Layer Sub-Millimeter Wave FSS Based Split Slot Ring Linear to Circular Polarization Convertor , 2010, IEEE Transactions on Antennas and Propagation.

[34]  Xiaoliang Ma,et al.  A Dual Circularly Polarized Horn Antenna in Ku-Band Based on Chiral Metamaterial , 2014, IEEE Transactions on Antennas and Propagation.

[35]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[36]  Jianqiang Gu,et al.  Highly flexible broadband terahertz metamaterial quarter‐wave plate , 2014 .

[37]  C. Mias,et al.  A Varactor-Tunable High Impedance Surface With a Resistive-Lumped-Element Biasing Grid , 2007, IEEE Transactions on Antennas and Propagation.

[38]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[39]  Shuo Li,et al.  An equivalent realization of coherent perfect absorption under single beam illumination , 2014, Scientific Reports.

[40]  N. Litchinitser,et al.  Spinning light on the nanoscale. , 2014, Nano letters.

[41]  Nathan J. Dawson,et al.  Coherent perfect rotation , 2012, 1202.3886.

[42]  Changtao Wang,et al.  Strong enhancement of light absorption and highly directive thermal emission in graphene. , 2013, Optics express.

[43]  Xin Li,et al.  Flat metasurfaces to focus electromagnetic waves in reflection geometry. , 2012, Optics letters.

[44]  S. Maier,et al.  Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution. , 2013, ACS nano.

[45]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .

[46]  Xiang Zhang,et al.  Switching terahertz waves with gate-controlled active graphene metamaterials. , 2012, Nature materials.

[47]  Yuanmu Yang,et al.  All-dielectric metasurface analogue of electromagnetically induced transparency , 2014, Nature Communications.

[48]  Davy Gérard,et al.  An angle-independent Frequency Selective Surface in the optical range. , 2006, Optics express.

[49]  Changtao Wang,et al.  Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography , 2015 .

[50]  Penghui Zhao,et al.  Graphene as broadband terahertz antireflection coating , 2014 .

[51]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[52]  S. Maier,et al.  Active control of electromagnetically induced transparency analogue in terahertz metamaterials , 2012, Nature Communications.

[53]  G. Toraldo di Francia,et al.  Super-gain antennas and optical resolving power , 1952 .

[54]  Qi Jie Wang,et al.  Small-divergence semiconductor lasers by plasmonic collimation , 2008 .

[55]  Kan Yao,et al.  Plasmonic metamaterials , 2013, 1312.4614.

[56]  H. Ming,et al.  Beam manipulating by metallic nano-optic lens containing nonlinear media. , 2007, Optics express.

[57]  Changtao Wang,et al.  Broadband Anomalous Reflection Based on Gradient Low-Q Meta-Surface , 2013 .

[58]  Mohsen Rahmani,et al.  University of Birmingham Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna , 2016 .

[59]  Xiang Zhang,et al.  Photoinduced handedness switching in terahertz chiral metamolecules , 2012, Nature Communications.

[60]  Morten Willatzen,et al.  Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. , 2011, Optics letters.

[61]  Ming Huang,et al.  Metamaterial Sensors , 2015 .

[62]  Yongkeun Park,et al.  Full-field subwavelength imaging using a scattering superlens. , 2014, Physical review letters.

[63]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[64]  T. Tahmasebi,et al.  Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers , 2012 .

[65]  Federico Capasso,et al.  Ultra-thin plasmonic optical vortex plate based on phase discontinuities , 2012 .

[66]  T. Jiang,et al.  Manipulating electromagnetic wave polarizations by anisotropic metamaterials. , 2007, Physical review letters.

[67]  Yuri S. Kivshar,et al.  Functional and nonlinear optical metasurfaces , 2015 .

[68]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[69]  Ata Khalid,et al.  Polarization insensitive, broadband terahertz metamaterial absorber. , 2011, Optics letters.

[70]  Federico Capasso,et al.  Multi-beam multi-wavelength semiconductor lasers , 2009 .

[71]  Erez Hasman,et al.  Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements. , 2004, Optics letters.

[72]  J. Teng,et al.  Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing , 2014, Light: Science & Applications.

[73]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[74]  Zhinong Ying,et al.  Improvements of dipole, helix, spiral, microstrip patch and aperture antennas with ground planes by using corrugated soft surfaces , 1996 .

[75]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[76]  Mohsen Rahmani,et al.  Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. , 2012, Nano letters.

[77]  Xiaoliang Ma,et al.  Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping , 2015, Scientific Reports.

[78]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[79]  Nikolay I. Zheludev,et al.  Controlling light-with-light without nonlinearity , 2012, Light: Science & Applications.

[80]  M. Pu,et al.  Perfect Absorption of Light by Coherently Induced Plasmon Hybridization in Ultrathin Metamaterial Film , 2012, Plasmonics.

[81]  Changtao Wang,et al.  Dynamic manipulation of polarization states using anisotropic meta-surface , 2014 .

[82]  R. Blaikie,et al.  Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs. , 2007, Optics express.

[83]  R. Soref,et al.  Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull's-eye-shaped metamaterial. , 2010, Optics express.

[84]  Guo-Qiang Lo,et al.  A Micromachined Reconfigurable Metamaterial via Reconfiguration of Asymmetric Split‐Ring Resonators , 2011 .

[85]  J. Teng,et al.  Magnetic-electric interference in metal-dielectric-metal oligomers: generation of magneto-electric Fano resonance , 2012 .

[86]  S. Maier,et al.  Probing the dielectric response of graphene via dual-band plasmonic nanoresonators. , 2013, Physical chemistry chemical physics : PCCP.

[87]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[88]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[89]  Lei Zhou,et al.  Photonic Spin Hall Effect with Nearly 100% Efficiency , 2015 .

[90]  Changtao Wang,et al.  Plasmonic beam deflector. , 2008, Optics express.

[91]  Zheng Zhu,et al.  Selective coherent perfect absorption in metamaterials , 2014 .

[92]  Harald Giessen,et al.  Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. , 2011, Nano letters.

[93]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[94]  Jin Au Kong,et al.  Robust method to retrieve the constitutive effective parameters of metamaterials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  Mingbo Pu,et al.  Engineering the dispersion of metamaterial surface for broadband infrared absorption. , 2012, Optics letters.

[96]  Xiangang Luo,et al.  Circular dichroism of graphene-based absorber in static magnetic field , 2014 .

[97]  Qiong He,et al.  A transparent metamaterial to manipulate electromagnetic wave polarizations. , 2011, Optics letters.

[98]  Zeyu Zhao,et al.  Engineering heavily doped silicon for broadband absorber in the terahertz regime. , 2012, Optics express.

[99]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[100]  A. E. Cetin,et al.  Seeing protein monolayers with naked eye through plasmonic Fano resonances , 2011, Proceedings of the National Academy of Sciences.

[101]  Changtao Wang,et al.  Dual-band asymmetry chiral metamaterial based on planar spiral structure , 2012 .

[102]  Lianshan Yan,et al.  Surface Plasmon Polaritons and Its Applications , 2012, IEEE Photonics Journal.

[103]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[104]  M Stalder,et al.  Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. , 1996, Optics letters.

[105]  G. Shvets,et al.  Real-space mapping of Fano interference in plasmonic metamolecules. , 2011, Nano letters.

[106]  Zubin Jacob,et al.  Optical hyperlens: far-field imaging beyond the diffraction limit , 2006, SPIE NanoScience + Engineering.

[107]  Hervé Rigneault,et al.  Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. , 2011, Nano letters.

[108]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[109]  Shuang Zhang,et al.  Creation of Ghost Illusions Using Wave Dynamics in Metamaterials , 2013 .

[110]  XiaoFei Zang,et al.  Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings , 2015, Scientific Reports.

[111]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[112]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[113]  Changtao Wang,et al.  Near-field collimation of light carrying orbital angular momentum with bull’s-eye-assisted plasmonic coaxial waveguides , 2015, Scientific Reports.

[114]  T. Senior Approximate boundary conditions , 1981 .

[115]  Qiang Cheng,et al.  A tunable metamaterial absorber using varactor diodes , 2013 .

[116]  Yidong Chong,et al.  Time-Reversed Lasing and Interferometric Control of Absorption , 2011, Science.

[117]  S. Maier,et al.  Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering. , 2014, Small.

[118]  Lin Chen,et al.  A polarization-independent broadband terahertz absorber , 2014 .

[119]  Yandong Gong,et al.  An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface. , 2015, Optics express.

[120]  Haifeng Cheng,et al.  Broadband metamaterial absorber based on coupling resistive frequency selective surface. , 2012, Optics express.

[121]  Bo O. Zhu,et al.  Active impedance metasurface with full 360° reflection phase tuning , 2013, Scientific Reports.

[122]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[123]  H. Lezec,et al.  Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. , 2003, Physical review letters.

[124]  Changtao Wang,et al.  Investigation of Fano resonance in planar metamaterial with perturbed periodicity. , 2013, Optics express.

[125]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[126]  A. Kildishev,et al.  Holey-metal lenses: sieving single modes with proper phases. , 2013, Nano letters.

[127]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[128]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[129]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[130]  He-Xiu Xu,et al.  Fractal-Shaped Metamaterials and Applications to Enhanced-Performance Devices Exhibiting High Selectivity , 2012 .

[131]  Changtao Wang,et al.  An Active Metamaterial for Polarization Manipulating , 2014 .

[132]  Chunlei Du,et al.  A waveguide slit array antenna fabricated with subwavelength periodic grooves , 2007 .

[133]  Fan Yang,et al.  Transmission Phase Limit of Multilayer Frequency-Selective Surfaces for Transmitarray Designs , 2014, IEEE Transactions on Antennas and Propagation.

[134]  John Huang,et al.  Bandwidth study of microstrip reflectarray and a novel phased reflectarray concept , 1995, IEEE Antennas and Propagation Society International Symposium. 1995 Digest.

[135]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[136]  N. M. R. Peres,et al.  Complete light absorption in graphene-metamaterial corrugated structures , 2012, 1206.3854.

[137]  Xiaoliang Ma,et al.  Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation , 2013 .

[138]  Xiaoliang Ma,et al.  Electrical tunable L-band absorbing material for two polarisations , 2012 .

[139]  P. Mulvaney,et al.  Repetitive Hole‐Mask Colloidal Lithography for the Fabrication of Large‐Area Low‐Cost Plasmonic Multishape Single‐Layer Metasurfaces , 2015 .

[140]  Glenn D. Boreman,et al.  Broadband infrared meanderline reflective quarter-wave plate. , 2011, Optics express.

[141]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[142]  Fernando Las-Heras,et al.  Microstrip Patch Antenna Bandwidth Enhancement Using AMC/EBG Structures , 2012 .

[143]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[144]  A. Tavakkoli K. G.,et al.  Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. , 2011, Optics express.

[145]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[146]  Young Jae Shin,et al.  Transparent and Flexible Polarization-Independent Microwave Broadband Absorber , 2014 .

[147]  Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation , 2015 .

[148]  Maksim Zalkovskij,et al.  Metamaterial polarization converter analysis: limits of performance , 2012, 1209.0095.

[149]  S. Bozhevolnyi,et al.  Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons. , 2011, Optics letters.

[150]  G. Shvets,et al.  Optical properties of Fano-resonant metallic metasurfaces on a substrate , 2012, 1201.3146.

[151]  Xiangang Luo,et al.  Principles of electromagnetic waves in metasurfaces , 2015 .

[152]  C. M. Horwitz,et al.  A new solar selective surface , 1974 .

[153]  K. Rozanov Ultimate thickness to bandwidth ratio of radar absorbers , 2000 .

[154]  L. Verslegers,et al.  Planar lenses based on nanoscale slit arrays in a metallic film , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[155]  Mohsen Rahmani,et al.  Fano resonance in novel plasmonic nanostructures , 2013 .

[156]  E Hasman,et al.  Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings. , 2001, Optics letters.

[157]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[158]  Jinghua Teng,et al.  Polarization independent broadband terahertz antireflection by deep‐subwavelength thin metallic mesh , 2014 .

[159]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[160]  Seeram Ramakrishna,et al.  Anti-reflective coatings: A critical, in-depth review , 2011 .

[161]  K. Aydin,et al.  Subwavelength resolution with a negative-index metamaterial superlens , 2007 .

[162]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[163]  H. Macdonald,et al.  The Integration of the Equations of Propagation of Electric Waves , 1912 .

[164]  S. Maier,et al.  High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer. , 2014, Nano letters.

[165]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[166]  G. Swenson,et al.  The University of Illinois radio telescope , 1961 .

[167]  K. Sarabandi,et al.  A Frequency Selective Surface With Miniaturized Elements , 2007, IEEE Transactions on Antennas and Propagation.

[168]  Boubacar Kante,et al.  Predicting nonlinear properties of metamaterials from the linear response. , 2015, Nature materials.

[169]  Ekmel Ozbay,et al.  Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. , 2011, Optics letters.

[170]  Sailing He,et al.  Ultra-broadband microwave metamaterial absorber , 2011, 1201.0062.

[171]  T. Chong,et al.  Hybrid metamaterial design and fabrication for terahertz resonance response enhancement. , 2010, Optics express.

[172]  F. Gori Measuring Stokes parameters by means of a polarization grating. , 1999, Optics letters.

[173]  A. Tünnermann,et al.  Asymmetric transmission of linearly polarized light at optical metamaterials. , 2010, Physical review letters.

[174]  T. Cui,et al.  Control of the Radiation Patterns Using Homogeneous and Isotropic Impedance Metasurface , 2015 .

[175]  C. R. Brewitt-Taylor,et al.  Limitation on the bandwidth of artificial perfect magnetic conductor surfaces , 2007 .

[176]  Marin Soljacic,et al.  Structural Colors from Fano Resonances , 2014, 1410.8589.

[177]  Xiaoliang Ma,et al.  Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion , 2015, Scientific Reports.

[178]  M. Hong,et al.  Coupling effect of spiral-shaped terahertz metamaterials for tunable electromagnetic response , 2014 .

[179]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[180]  Miguel Beruete,et al.  Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies , 2013 .

[181]  S. Maier,et al.  Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers. , 2014, ACS nano.

[182]  L. Shafai,et al.  Reciprocal circular-polarization-selective surface , 1996 .

[183]  Mohsen Rahmani,et al.  Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. , 2013, ACS nano.

[184]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[185]  Xiangang Luo,et al.  Sub 100 nm lithography based on plasmon polariton resonance , 2003, Digest of Papers Microprocesses and Nanotechnology 2003. 2003 International Microprocesses and Nanotechnology Conference.

[186]  Xiangang Luo,et al.  Subwavelength photolithography based on surface-plasmon polariton resonance. , 2004, Optics express.

[187]  Tianhua Feng,et al.  Wave front engineering from an array of thin aperture antennas. , 2012, Optics express.

[188]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[189]  Satoshi Ishii,et al.  Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. , 2010, Optics express.

[190]  A. Kildishev,et al.  Optical black hole: Broadband omnidirectional light absorber , 2009 .

[191]  Douglas H. Werner,et al.  Reconfigurable and Tunable Metamaterials: A Review of the Theory and Applications , 2014 .

[192]  Hanmin Yao,et al.  Patterning sub 100 nm isolated patterns with 436 nm lithography , 2003 .

[193]  Qi Jie Wang,et al.  Designer spoof surface plasmon structures collimate terahertz laser beams. , 2010, Nature materials.

[194]  Joshua M. Pearce,et al.  Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics , 2014, Scientific Reports.

[195]  Aurélien Drezet,et al.  Generating far-field orbital angular momenta from near-field optical chirality. , 2013, Physical review letters.

[196]  Xiangang Luo,et al.  Design and Numerical Analyses of Ultrathin Plasmonic Lens for Subwavelength Focusing by Phase Discontinuities of Nanoantenna Arrays , 2013 .

[197]  A. Karlsson,et al.  Approximate Boundary Conditions for Thin Structures , 2009, IEEE Transactions on Antennas and Propagation.

[198]  A. Karlsson,et al.  Capacitive Circuit Method for Fast and Efficient Design of Wideband Radar Absorbers , 2009, IEEE Transactions on Antennas and Propagation.

[199]  Houtong Chen,et al.  Simultaneous Control of Light Polarization and Phase Distributions Using Plasmonic Metasurfaces , 2015 .

[200]  Samuel,et al.  Observation of topological phase by use of a laser interferometer. , 1988, Physical review letters.

[201]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[202]  Xiangang Luo,et al.  A Beam Steering Horn Antenna Using Active Frequency Selective Surface , 2013, IEEE Transactions on Antennas and Propagation.

[203]  Xiaoliang Ma,et al.  Dual-band 90° polarization rotator using twisted split ring resonators array , 2013 .

[204]  Xiaoliang Ma,et al.  Multi-band circular polarizer using planar spiral metamaterial structure. , 2012, Optics express.

[205]  T. Jiang,et al.  Low-DC Voltage-Controlled Steering-Antenna Radome Utilizing Tunable Active Metamaterial , 2012, IEEE Transactions on Microwave Theory and Techniques.

[206]  Zheng Wang,et al.  Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. , 2013, Physical review letters.

[207]  Federico Capasso,et al.  Aberrations of flat lenses and aplanatic metasurfaces. , 2013, Optics express.

[208]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[209]  Xiaoliang Ma,et al.  Single‐layer circular polarizer using metamaterial and its application in antenna , 2012 .

[210]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[211]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[212]  M. Pu,et al.  Fano resonance induced by mode coupling in all-dielectric nanorod array , 2014 .

[213]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[214]  Shan-Shan Jiang,et al.  Controlling the Polarization State of Light with a Dispersion-Free Metastructure , 2014 .

[215]  George V. Eleftheriades,et al.  Optical Huygens' Metasurfaces with Independent Control of the Magnitude and Phase of the Local Reflection Coefficients , 2014 .

[216]  Hanspeter Helm,et al.  Nanostructured gold films as broadband terahertz antireflection coatings , 2008 .

[217]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[218]  Qiang Kan,et al.  An ultrathin terahertz lens with axial long focal depth based on metasurfaces. , 2013, Optics express.

[219]  Mohsen Rahmani,et al.  Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. , 2012, Nano letters.

[220]  Yanqin Wang,et al.  Circular Dichroism and Optical Rotation in Twisted Y-Shaped Chiral Metamaterial , 2013 .

[221]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[222]  M. J. Brett,et al.  Chiral sculptured thin films , 1996, Nature.

[223]  T. Tahmasebi,et al.  Influence of plasmon destructive interferences on optical properties of gold planar quadrumers , 2011, Nanotechnology.

[224]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[225]  D. Werner,et al.  Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. , 2011, ACS nano.

[226]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[227]  Xiangang Luo,et al.  Conversion of broadband energy to narrowband emission through double-sided metamaterials. , 2013, Optics express.

[228]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[229]  M. Tonouchi,et al.  Perfect Broadband Terahertz Antireflection by Deep‐Subwavelength, Thin, Lamellar Metallic Gratings , 2013 .

[230]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[231]  Yong‐Lai Zhang,et al.  Designable 3D nanofabrication by femtosecond laser direct writing , 2010 .

[232]  R. Wood,et al.  On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum , 1902 .

[233]  T. Itoh,et al.  Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth , 2004, IEEE Transactions on Microwave Theory and Techniques.

[234]  Silke Christiansen,et al.  Enhanced Raman Scattering of Graphene using Arrays of Split Ring Resonators , 2013 .

[235]  A Kazemzadeh,et al.  Nonmagnetic Ultrawideband Absorber With Optimal Thickness , 2011, IEEE Transactions on Antennas and Propagation.

[236]  Yixian Qian,et al.  Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array , 2013 .

[237]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.

[238]  Christopher Robert Lawrence,et al.  Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves , 2005 .

[239]  George M Whitesides,et al.  Engineering shadows to fabricate optical metasurfaces. , 2014, ACS nano.

[240]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[241]  Mushtaq Ahmed,et al.  Metamaterial Inspired Microstrip Antenna Investigations Using Metascreens , 2015 .

[242]  Y. Gong,et al.  Parallel laser microfabrication of terahertz metamaterials and its polarization-dependent transmission property , 2010 .

[243]  J. Valentine,et al.  Dielectric metasurface analogue of electromagnetically induced transparency , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[244]  C. Pfeiffer,et al.  Cascaded metasurfaces for complete phase and polarization control , 2013 .

[245]  Xueqin Huang,et al.  Optical metamaterial for polarization control , 2009 .

[246]  Yanqin Wang,et al.  Transfer of orbital angular momentum through sub-wavelength waveguides. , 2015, Optics express.

[247]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[248]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[249]  Andrea Alù,et al.  Broadening the cloaking bandwidth with non-Foster metasurfaces. , 2013, Physical review letters.

[250]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[251]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[252]  A. Tennant,et al.  A single-layer tuneable microwave absorber using an active FSS , 2004, IEEE Microwave and Wireless Components Letters.

[253]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[254]  Cheng Huang,et al.  Reducing side lobe level of antenna using frequency selective surface superstrate , 2015 .

[255]  Changtao Wang,et al.  Design principles for infrared wide-angle perfect absorber based on plasmonic structure. , 2011, Optics express.

[256]  Changtao Wang,et al.  Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens , 2015 .

[257]  Zhen Tian,et al.  Broadband Terahertz Wave Deflection Based on C‐shape Complex Metamaterials with Phase Discontinuities , 2013, Advanced materials.

[258]  S. Burger,et al.  Gold helix photonic metamaterials: a numerical parameter study. , 2010, Optics express.

[259]  Houtong Chen,et al.  Metasurface optical antireflection coating , 2014 .

[260]  Minghui Hong,et al.  Engineering the Phase Front of Light with Phase-Change Material Based Planar lenses , 2015, Scientific Reports.

[261]  Erez Hasman,et al.  Optical spin Hall effects in plasmonic chains. , 2011, Nano letters.

[262]  S. A. Schelkunoff,et al.  Some equivalence theorems of electromagnetics and their application to radiation problems , 1936 .

[263]  Andrea Alù,et al.  Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions , 2014, CLEO 2014.

[264]  Tomislav Debogovic,et al.  MEMS-Reconfigurable Metamaterials and Antenna Applications , 2014, 1404.5570.

[265]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[266]  W. Sichak,et al.  Microwave High-Speed Continuous Phase Shifter , 1955, Proceedings of the IRE.