A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations

In this report, a charge preserving numerical resolution of the 1D Vlasov-Ampere equation is achieved, with a forward Semi-Lagrangian method introduced in \cite{4respaud}. The Vlasov equation belongs to the kinetic way of simulating plasmas evolution, and is coupled with the Poisson's equation, or equivalently under charge conservation, the Ampere's one, which self-consistently rules the electric field evolution. In order to ensure having proper physical solutions, it is necessary that the scheme preserves charge numerically. B-Spline deposition will be used for the interpolation step. The solving of the characteristics will be made with a Runge-Kutta 2 method and with a Cauchy-Kovalevsky procedure.

[1]  Olivier Coulaud,et al.  Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system , 2003 .

[2]  José A. Carrillo,et al.  Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models , 2007, SIAM J. Sci. Comput..

[3]  Holger Schmitz,et al.  Comparison of time splitting and backsubstitution methods for integrating Vlasov's equation with magnetic fields , 2006, Comput. Phys. Commun..

[4]  B. M. Marder,et al.  A method for incorporating Gauss' lasw into electromagnetic pic codes , 1987 .

[5]  Magdi Shoucri,et al.  A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator , 1996 .

[6]  J. W. Eastwood,et al.  The virtual particle electromagnetic particle-mesh method , 1991 .

[7]  E. Sonnendrücker,et al.  Comparison of Eulerian Vlasov solvers , 2003 .

[8]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[9]  Nigel Wood,et al.  A monotonic and positive–definite filter for a Semi‐Lagrangian Inherently Conserving and Efficient (SLICE) scheme , 2005 .

[10]  T. Yabe,et al.  Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space , 1999 .

[11]  Eric Sonnendrücker,et al.  Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations , 2011, Numerische Mathematik.

[12]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[13]  Eric Sonnendrücker,et al.  A forward semi-Lagrangian method for the numerical solution of the Vlasov equation , 2008, Comput. Phys. Commun..

[14]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[15]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[16]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[17]  M. Shoucri Nonlinear evolution of the bump‐on‐tail instability , 1979 .

[18]  Claus-Dieter Munz,et al.  Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .

[19]  T. Esirkepov,et al.  Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor , 2001 .

[20]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[21]  GLOBAL SOLUTIONS FOR THE ONE-DIMENSIONAL VLASOV¿MAXWELL SYSTEM FOR LASER-PLASMA INTERACTION , 2006, math/0609397.

[22]  Olivier Coulaud,et al.  Study of propagation of ultraintense electromagnetic wave through plasma using semi-Lagrangian Vlasov codes , 2000 .

[23]  Nigel Wood,et al.  The Parabolic Spline Method (PSM) for conservative transport problems , 2006 .

[24]  Laurent Villard,et al.  A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..

[25]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[26]  Alain Ghizzo,et al.  A Vlasov code for the numerical simulation of stimulated Raman scattering , 1990 .

[27]  Nicolas Crouseilles,et al.  Convergence of a semi-Lagrangian scheme for the reduced Vlasov–Maxwell system for laser–plasma interaction , 2009, Numerische Mathematik.

[28]  S. Reich,et al.  The remapped particle‐mesh semi‐Lagrangian advection scheme , 2006, physics/0607243.

[29]  Sebastian Reich,et al.  An explicit and conservative remapping strategy for semi‐Lagrangian advection , 2007 .

[30]  M. Shoucri,et al.  Stimulated Raman scattering: Action evolution and particle trapping via Euler–Vlasov fluid simulation , 1992 .

[31]  T. D. Arber,et al.  VALIS: A split-conservative scheme for the relativistic 2D Vlasov-Maxwell system , 2009, J. Comput. Phys..

[32]  Hiroshi Matsumoto,et al.  A new charge conservation method in electromagnetic particle-in-cell simulations , 2003 .

[33]  Magdi Shoucri A two-level implicit scheme for the numerical solution of the linearized vorticity equation , 1981 .

[34]  Jörg Büchner,et al.  A new conservative unsplit method for the solution of the Vlasov equation , 2006, J. Comput. Phys..

[35]  John D. Villasenor,et al.  Rigorous charge conservation for local electromagnetic field solvers , 1992 .

[36]  Régine Barthelmé Le problème de conservation de la charge dans le couplage des équations de Vlasov et de Maxwell , 2005 .