Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy.

We demonstrate a new technique for high resolution imaging of near field profiles in highly confining photonic structures. This technique, Transmission-based Near-field Scanning Optical Microscopy (TraNSOM), measures changes in transmission through a waveguide resulting from near field perturbation by a scanning metallic probe. Using this technique we compare different mode polarizations and measure a transverse optical decay length of lambda/15 in sub-micron Silicon On Insulator (SOI) waveguides. These measurements compare well to theoretical results.

[1]  Bahram Jalali,et al.  Demonstration of directly modulated silicon Raman laser. , 2005, Optics express.

[2]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[3]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[4]  S. Kawata,et al.  Near-field scanning optical microscope with a metallic probe tip. , 1994, Optics letters.

[5]  A. Boccara,et al.  Near-field optical microscope based on local perturbation of a diffraction spot. , 1995, Optics letters.

[6]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[7]  Maria Kafesaki,et al.  Controlling the resonance of a photonic crystal microcavity by a near-field probe. , 2005, Physical review letters.

[8]  John A. Rogers,et al.  Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches , 2006 .

[9]  Mario J. Paniccia,et al.  Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide , 2004 .

[10]  Y. Vlasov,et al.  Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. , 2003, Optics express.

[11]  J P Korterik,et al.  Tracking Femtosecond Laser Pulses in Space and Time , 2001, Science.

[12]  Y. Vlasov,et al.  Raman amplification in ultrasmall silicon-on-insulator wire waveguides. , 2004, Optics express.

[13]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[14]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[16]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[17]  V. Subramaniam,et al.  Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance. , 2006, Optics express.

[18]  Pascal Royer,et al.  Probing photonic and optoelectronic structures by Apertureless Scanning Near‐Field Optical Microscopy , 2004, Microscopy research and technique.

[19]  Ivo Rendina,et al.  Advances in silicon-on-insulator optoelectronics , 1998 .

[20]  F. Mignard,et al.  Near-field optical imaging of light propagation in semiconductor waveguide structures , 1998 .

[21]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[22]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[23]  O. Svelto,et al.  Highly efficient second-harmonic nanosource for near-field optics and microscopy. , 2004, Optics letters.

[24]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[25]  Olivier J. F. Martin,et al.  Scanning near-field optical microscopy with aperture probes: Fundamentals and applications , 2000 .

[26]  R. Bachelot,et al.  Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope. , 2005, Optics express.

[27]  A. Boccara,et al.  Polarization effects in apertureless scanning near-field optical microscopy: an experimental study. , 1999, Optics letters.

[28]  Michal Lipson,et al.  Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. , 2004, Optics express.

[29]  Michal Lipson,et al.  All-optical slow-light on a photonic chip. , 2006, Optics express.

[30]  Masaya Notomi,et al.  Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. , 2005, Optics letters.

[31]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[32]  S. Chu,et al.  Measurement of internal spatial modes and local propagation properties in optical waveguides , 1999 .