Distributed Sensing and Processing for Multi-Camera Networks

Sensor networks with large numbers of cameras are becoming increasingly prevalent in a wide range of applications, including video conferencing, motion capture, surveillance, and clinical diagnostics. In this chapter, we identify some of the fundamental challenges in designing such systems: robust statistical inference, computationally efficiency, and opportunistic and parsimonious sensing. We show that the geometric constraints induced by the imaging process are extremely useful for identifying and designing optimal estimators for object detection and tracking tasks. We also derive pipelined and parallelized implementations of popular tools used for statistical inference in non-linear systems, of which multi-camera systems are examples. Finally, we highlight the use of the emerging theory of compressive sensing in reducing the amount of data sensed and communicated by a camera network.

[1]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[2]  Wayne H. Wolf,et al.  A real-time background subtraction method with camera motion compensation , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[3]  Rama Chellappa,et al.  Object Detection, Tracking and Recognition for Multiple Smart Cameras , 2008, Proceedings of the IEEE.

[4]  Martin Vetterli,et al.  Proceedings of the 4th international symposium on Information processing in sensor networks , 2005 .

[5]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[6]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[8]  Andrea Cavallaro,et al.  Multi-Camera Networks: Principles and Applications , 2009 .

[9]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[10]  Kenichi Kanatani,et al.  Statistical optimization for geometric computation - theory and practice , 1996, Machine intelligence and pattern recognition.

[11]  张振跃,et al.  Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment , 2004 .

[12]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[13]  Lindsay I. Smith,et al.  A tutorial on Principal Components Analysis , 2002 .

[14]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[15]  Rama Chellappa,et al.  Visual tracking and recognition using appearance-adaptive models in particle filters , 2004, IEEE Transactions on Image Processing.

[16]  Shuvra S. Bhattacharyya,et al.  A Communication Interface for Multiprocessor Signal Processing Systems , 2006, 2006 IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time Multimedia.

[17]  H. Tjelmeland,et al.  Using all Metropolis-Hastings proposals to estimate mean values , 2004 .

[18]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[19]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[20]  Y. Bar-Shalom Tracking and data association , 1988 .

[21]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[22]  S. Mallat A wavelet tour of signal processing , 1998 .

[23]  Larry S. Davis,et al.  Multi-camera Tracking and Segmentation of Occluded People on Ground Plane Using Search-Guided Particle Filtering , 2006, ECCV.

[24]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[25]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[26]  Volkan Cevher,et al.  Compressive Sensing for Background Subtraction , 2008, ECCV.

[27]  Olivier D. Faugeras,et al.  3D articulated models and multi-view tracking with silhouettes , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[28]  Ankur Srivastava,et al.  Algorithmic and Architectural Optimizations for Computationally Efficient Particle Filtering , 2008, IEEE Transactions on Image Processing.

[29]  L. Davis,et al.  M2Tracker: A Multi-View Approach to Segmenting and Tracking People in a Cluttered Scene , 2003, International Journal of Computer Vision.

[30]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[31]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[32]  Qinfen Zheng,et al.  A temporal variance-based moving target detector , 2005 .

[33]  Rama Chellappa,et al.  Model Driven Segmentation of Articulating Humans in Laplacian Eigenspace , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Parameswaran Ramanathan,et al.  Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor network , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[35]  R. Chellappa,et al.  Optimal Multi-View Fusion of Object Locations , 2008, 2008 IEEE Workshop on Motion and video Computing.

[36]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[37]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[38]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[40]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[41]  Anthony Skjellum,et al.  A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..

[42]  Pascal Fua,et al.  Multicamera People Tracking with a Probabilistic Occupancy Map , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Mark Coates,et al.  Distributed particle filters for sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[44]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[45]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[46]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[47]  L. Davis,et al.  el-based tracking of humans in action: , 1996 .

[48]  James Black,et al.  Multi view image surveillance and tracking , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[49]  Ming Xu,et al.  Tracking football players with multiple cameras , 2004 .

[50]  Mubarak Shah,et al.  A Multiview Approach to Tracking People in Crowded Scenes Using a Planar Homography Constraint , 2006, ECCV.

[51]  Stephen P. Boyd,et al.  Distributed average consensus with least-mean-square deviation , 2007, J. Parallel Distributed Comput..

[52]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.