Comparison of lidar- and allometry-derived canopy height models in an eastern deciduous forest

Abstract Tree crown geometry and height, especially when coupled with remotely sensed data, can aid in the characterization of tree and forest structure. In this study, we develop mixed-effects model allometric equations for tree height, crown radius, and crown depth using data collected on 374 trees across 14 species within the extent of the joint Center for Tropical Forest Science (CTFS) and Smithsonian Institute’s Forest Global Earth Observatory (ForestGEO) MegaPlot on Prospect Hill at Harvard Forest, Massachusetts. We applied allometry to a census of the 35-ha plot on Prospect Hill to evaluate tree height and crown radius estimates using a lidar canopy height model. We found significant relationships using stem diameter-at-breast-height (DBH) and species to estimate tree height (ρr2 = 0.70, RMSE = 2.96 m), crown depth (ρr2 = 0.35, RMSE = 3.24 m) and crown radius (ρr2 = 0.43, RMSE = 1.22 m). Using Fast Fourier Transforms (FFTs), we compared the power spectra of a lidar canopy height model to five synthetic canopy height models derived from allometric estimates of height and crown radius. The FFTs showed good agreement between lidar and synthetic canopy height models (CHMs) at spatial wavelengths longer than 64 m, or about the distance across 3–4 dominant tree crowns, and poorer agreement at shorter spatial wavelengths, which we attribute to the simple crown shape applied to modeled crowns and a lack of crown overlap in the synthetic CHMs compared to the lidar CHM. At the tree level, some species exhibited tight links between lidar-measured height and estimated tree height (e.g., Quercus rubra, Quercus velutina, Pinus strobus), suggesting height allometry provided reasonable estimates of tree height for some species despite a negative bias in the synthetic canopy height models relative to the lidar canopy height model.

[1]  H. L. Allen,et al.  Leaf Area and Above- and Belowground Growth Responses of Loblolly Pine to Nutrient and Water Additions , 1998, Forest Science.

[2]  G. Asner,et al.  A universal airborne LiDAR approach for tropical forest carbon mapping , 2011, Oecologia.

[3]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[4]  Jerrold H. Zar,et al.  Calculation and Miscalculation of the Allometric Equation as a Model in Biological Data , 1968 .

[5]  Vicente S. Monleon,et al.  Challenges to Estimating Tree Height via LiDAR in Closed-Canopy Forests: A Parable from Western Oregon , 2010, Forest Science.

[6]  M. Ducey,et al.  Multivariate statistical analysis of asynchronous lidar data and vegetation models in a neotropical forest , 2014 .

[7]  Michele Dalponte,et al.  Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data , 2016, Methods in ecology and evolution.

[8]  Tina Cormier,et al.  Mapping selective logging impacts in Borneo with GPS and airborne lidar , 2016 .

[9]  Andrew J. Fast,et al.  Height-Diameter Equations for Select New Hampshire Tree Species , 2011 .

[10]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[11]  R. Czaplewski,et al.  Retransformation bias in a stem profile model , 1990 .

[12]  S. Pacala,et al.  Increased forest carbon storage with increased atmospheric CO2 despite nitrogen limitation: a game‐theoretic allocation model for trees in competition for nitrogen and light , 2015, Global change biology.

[13]  Walter Bitterlich,et al.  The relascope idea. Relative measurements in forestry. , 1984 .

[14]  Donald A. Falk,et al.  Application of Metabolic Scaling Theory to reduce error in local maxima tree segmentation from aerial LiDAR , 2014 .

[15]  G. Pegram,et al.  Empirical Mode Decomposition in 2-D space and time: a tool for space-time rainfall analysis and nowcasting , 2005 .

[16]  Robert J. McGaughey,et al.  Assessing the influence of return density on estimation of lidar-based aboveground biomass in tropical peat swamp forests of Kalimantan, Indonesia , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[17]  S. Frolking,et al.  Size and frequency of natural forest disturbances and the Amazon forest carbon balance , 2014, Nature Communications.

[18]  Jennifer L. Dungan,et al.  Forest ecosystem processes at the watershed scale: basis for distributed simulation , 1991 .

[19]  M. Schaepman,et al.  Review of optical-based remote sensing for plant trait mapping , 2013 .

[20]  Drew W. Purves,et al.  Crown Plasticity and Competition for Canopy Space: A New Spatially Implicit Model Parameterized for 250 North American Tree Species , 2007, PloS one.

[21]  Ulf Dieckmann,et al.  Modeling carbon allocation in trees: a search for principles. , 2012, Tree physiology.

[22]  M. Keller,et al.  Estimating Canopy Structure in an Amazon Forest from Laser Range Finder and IKONOS Satellite Observations1 , 2002 .

[23]  G. Baskerville Use of Logarithmic Regression in the Estimation of Plant Biomass , 1972 .

[24]  João Roberto dos Santos,et al.  Tropical-Forest Biomass Estimation at X-Band From the Spaceborne TanDEM-X Interferometer , 2015, IEEE Geoscience and Remote Sensing Letters.

[25]  D. A. King,et al.  Height-diameter allometry of tropical forest trees , 2010 .

[26]  Norman A. Bourg,et al.  CTFS‐ForestGEO: a worldwide network monitoring forests in an era of global change , 2015, Global change biology.

[27]  M. Keller,et al.  Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties , 2008 .

[28]  E. D. Ford Branching, crown structure and the control of timber production , 1985 .

[29]  George C. Hurtt,et al.  An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems , 2014 .

[30]  Lawrence A. Corp,et al.  NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager , 2013, Remote. Sens..

[31]  Ü. Niinemets,et al.  Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs , 2006 .

[32]  Charles D. Canham,et al.  Growth and Canopy Architecture of Shade‐Tolerant Trees: Response to Canopy Gaps , 1988 .

[33]  Robert J. McGaughey,et al.  Monitoring selective logging in western Amazonia with repeat lidar flights , 2014 .

[34]  Mark J. Ducey,et al.  A stand density index for complex mixed species forests in the northeastern United States , 2010 .

[35]  Maxim Neumann,et al.  Detecting tropical forest biomass dynamics from repeated airborne lidar measurements , 2013 .

[36]  David R. Miller Forest stand dynamics , 1997 .

[37]  D. J. Finney On the Distribution of a Variate Whose Logarithm is Normally Distributed , 1941 .

[38]  F. Schumacher Logarithmic expression of timber-tree volume , 1933 .

[39]  S. Frolking,et al.  Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure , 2009 .

[40]  J. Cermak,et al.  Tree allometry of Douglas fir and Norway spruce on a nutrient-poor and a nutrient-rich site , 2013, Trees.

[41]  S. Pacala,et al.  Predicting and understanding forest dynamics using a simple tractable model , 2008, Proceedings of the National Academy of Sciences.

[42]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[43]  K. Niklas Size-dependent Allometry of Tree Height, Diameter and Trunk-taper , 1995 .

[44]  Mark C. Vanderwel,et al.  Allometric equations for integrating remote sensing imagery into forest monitoring programmes , 2016, Global change biology.

[45]  A. MacKinnon Forest Structure : A Key to the Ecosystem , 2012 .

[46]  Knute J. Nadelhoffer,et al.  EFFECTS OF CHRONIC NITROGEN ADDITIONS ON UNDERSTORY SPECIES IN A RED PINE PLANTATION , 1999 .

[47]  Michael W. Palace,et al.  Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data , 2015 .

[48]  Ü. Niinemets,et al.  Needle longevity, shoot growth and branching frequency in relation to site fertility and within-canopy light conditions in Pinus sylvestris , 2003 .

[49]  Mark J. Ducey,et al.  Evergreenness and wood density predict height–diameter scaling in trees of the northeastern United States , 2012 .

[50]  Yichun Xie,et al.  Remote sensing imagery in vegetation mapping: a review , 2008 .

[51]  M. Ducey,et al.  Climate and species functional traits influence maximum live tree stocking in the Lake States, USA , 2017 .

[52]  C. Woodcock,et al.  Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar , 2011 .

[53]  M. Nieuwenhuis,et al.  Retrieval of forest structural parameters using LiDAR remote sensing , 2010, European Journal of Forest Research.

[54]  Hans Pretzsch,et al.  Wood quality in complex forests versus even-aged monocultures: review and perspectives , 2016, Wood Science and Technology.

[55]  S. Popescu,et al.  Lidar remote sensing of forest biomass : A scale-invariant estimation approach using airborne lasers , 2009 .

[56]  V. Baldwin,et al.  The relationship between Reineke's stand-density index and physical stem mechanics , 1996 .

[57]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[58]  Sassan Saatchi,et al.  Lidar detection of individual tree size in tropical forests , 2016 .

[59]  Eben N. Broadbent,et al.  Spatial partitioning of biomass and diversity in a lowland Bolivian forest: Linking field and remote sensing measurements , 2008 .

[60]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[61]  P. Miles Specific Gravity and Other Properties of Wood and Bark for 156 Tree Species Found in North America , 2015 .

[62]  M. Keller,et al.  Tree height and tropical forest biomass estimation , 2013 .

[63]  Terje Gobakken,et al.  Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania , 2015, Carbon Balance and Management.

[64]  Hans Pretzsch,et al.  Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures , 2014 .

[65]  Christina Herrick,et al.  Estimating Tropical Forest Structure Using a Terrestrial Lidar , 2016, PloS one.

[66]  G. Hurtt,et al.  Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica , 2009 .

[67]  Alan H. Strahler,et al.  Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing , 2009 .

[68]  O. Phillips,et al.  The importance of crown dimensions to improve tropical tree biomass estimates. , 2014, Ecological applications : a publication of the Ecological Society of America.

[69]  Ü. Niinemets,et al.  Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences , 2008 .