ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase

[1]  S. Kaya,et al.  Replacement of Several Single Amino Acid Side Chains Exposed to the Inside of the ATP-binding Pocket Induces Different Extents of Affinity Change in the High and Low Affinity ATP-binding Sites of Rat Na/K-ATPase* , 2002, The Journal of Biological Chemistry.

[2]  Hiromi Nomura,et al.  Structural changes in the calcium pump accompanying the dissociation of calcium , 2002, Nature.

[3]  W. Kühlbrandt,et al.  Structure, Mechanism, and Regulation of the Neurospora Plasma Membrane H ؉ -atpase , 2022 .

[4]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[5]  P. Berggren,et al.  Tyrosine 537 within the Na+,K+-ATPase α-Subunit Is Essential for AP-2 Binding and Clathrin-dependent Endocytosis* , 2002, The Journal of Biological Chemistry.

[6]  Chen Xu,et al.  A structural model for the catalytic cycle of Ca(2+)-ATPase. , 2002, Journal of molecular biology.

[7]  P. A. Pedersen,et al.  Importance of Na,K-ATPase residue alpha 1-Arg544 in the segment Arg544-Asp567 for high-affinity binding of ATP, ADP, or MgATP. , 2002, Biochemistry.

[8]  H. Vorum,et al.  Three-dimensional structure of renal Na,K-ATPase from cryo-electron microscopy of two-dimensional crystals. , 2001, Journal of molecular biology.

[9]  P. A. Pedersen,et al.  Role of phylogenetically conserved amino acids in folding of Na,K-ATPase. , 2001, Biochemistry.

[10]  P. A. Pedersen,et al.  Structure–function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na,K-ATPase , 2001 .

[11]  D. Stokes,et al.  Structure of Na+,K+-ATPase at 11-A resolution: comparison with Ca2+-ATPase in E1 and E2 states. , 2001, Biophysical journal.

[12]  A. Therien,et al.  Mechanisms of sodium pump regulation. , 2000, American journal of physiology. Cell physiology.

[13]  M. Nakasako,et al.  Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution , 2000, Nature.

[14]  J. Mccammon,et al.  Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. , 1999, Journal of structural biology.

[15]  W. Kühlbrandt,et al.  Three-dimensional map of the plasma membrane H+-ATPase in the open conformation , 1998, Nature.

[16]  David L. Stokes,et al.  Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution , 1998, Nature.

[17]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[18]  D. S. Garrett,et al.  Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. , 1997, Biochemistry.

[19]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[20]  J. Andersen,et al.  Mutagenesis of Segment 487Phe-Ser-Arg-Asp-Arg-Lys492 of Sarcoplasmic Reticulum Ca2+-ATPase Produces Pumps Defective in ATP Binding* , 1996, The Journal of Biological Chemistry.

[21]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[22]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[23]  D. Drenckhahn,et al.  Identification of a Binding Motif for Ankyrin on the α-Subunit of Na+,K+-ATPase (*) , 1995, The Journal of Biological Chemistry.

[24]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[25]  K Wüthrich,et al.  The program XEASY for computer-supported NMR spectral analysis of biological macromolecules , 1995, Journal of biomolecular NMR.

[26]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[27]  R. Jordan,et al.  Modulation of the ATPase Activity of the Molecular Chaperone DnaK by Peptides and the DnaJ and GrpE Heat Shock Proteins (*) , 1995, The Journal of Biological Chemistry.

[28]  T. Toyofuku,et al.  Amino acids Lys-Asp-Asp-Lys-Pro-Val402 in the Ca(2+)-ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban. , 1994, The Journal of biological chemistry.

[29]  R. Farley,et al.  Lysine 480 is not an essential residue for ATP binding or hydrolysis by Na,K-ATPase. , 1992, The Journal of biological chemistry.

[30]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[31]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[32]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[33]  K. Wüthrich,et al.  Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. , 1989, Biochemistry.

[34]  S. Kume,et al.  Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. , 1972, The Journal of biological chemistry.

[35]  J. Kaplan,et al.  Biochemistry of Na,K-ATPase. , 2002, Annual review of biochemistry.

[36]  P. A. Pedersen,et al.  Structure-function relationships of Na(+), K(+), ATP, or Mg(2+) binding and energy transduction in Na,K-ATPase. , 2001, Biochimica et biophysica acta.

[37]  R. Koradia,et al.  Point-centered domain decomposition for parallel molecular dynamics simulation , 2000 .

[38]  B. Rossier,et al.  Structure-function relationship of Na,K-ATPase. , 1991, Annual review of physiology.

[39]  J C SKOU,et al.  The influence of some cations on an adenosine triphosphatase from peripheral nerves. , 1957, Biochimica et biophysica acta.