Quantum mechanical rate constants for bimolecular reactions

Several formally exact expressions for quantum mechanical rate constants (i.e., bimolecular reactive cross sections suitably averaged and summed over initial and final states) are derived and their relation to one another analyzed. It is suggested that they may provide a useful means for calculating quantum mechanical rate constants accurately without having to solve the complete state‐to‐state quantum mechanical reactive scattering problem. Several ways are discussed for evaluating the quantum mechanical traces involved in these expressions, including a path integral evaluation of the Boltzmann operator/time propagator and a discrete basis set approximation. Both these methods are applied to a one‐dimensional test problem (the Eckart barrier).