Planar hyperlens based on a modulated graphene monolayer

The canalization of terahertz surface plasmon polaritons using a modulated graphene monolayer is investigated for subwavelength imaging. An anisotropic surface conductivity formed by a set of parallel nanoribbons with alternating positive and negative imaginary conductivities is used to realize the canalization regime required for hyperlensing. The ribbons are narrow compared to the wavelength, and are created electronically by gating a graphene layer over a corrugated ground plane. Good quality canalization of surface plasmon polaritons is shown in the terahertz even in the presence of realistic loss in graphene, with relevant implications for subwavelength imaging applications.

[1]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[2]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[3]  T. Cui,et al.  A planar electromagnetic “black hole” based on graphene , 2012 .

[4]  G. V. Chester,et al.  Solid State Physics , 2000 .

[5]  Hirokazu Fukidome,et al.  Graphene-based devices in terahertz science and technology , 2012 .

[6]  G. Hanson,et al.  Surface plasmon polaritons on soft-boundary graphene nanoribbons and their application in switching/demultiplexing , 2013 .

[7]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[8]  Arash Mafi,et al.  Excitation of discrete and continuous spectrum for a surface conductivity model of graphene , 2011 .

[9]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[10]  B. Hong,et al.  Far-infrared study of substrate-effect on large scale graphene , 2011 .

[11]  Ebrahim Forati,et al.  Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support , 2012 .

[12]  S. Mikhailov,et al.  New electromagnetic mode in graphene. , 2007, Physical review letters.

[13]  J. Pendry,et al.  Imaging the near field , 2002, cond-mat/0207026.

[14]  N. M. R. Peres,et al.  Conductance quantization in mesoscopic graphene , 2006 .

[15]  F. Xia,et al.  Role of contacts in graphene transistors: A scanning photocurrent study , 2009 .

[16]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[17]  Pekka Ikonen,et al.  Canalization of subwavelength images by electromagnetic crystals , 2005 .

[18]  Yang Hao,et al.  Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime , 2006 .

[19]  Zhenhua Ni,et al.  Plasmons in graphene: Recent progress and applications , 2013 .

[20]  Nader Engheta,et al.  Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes , 2006, physics/0603052.

[21]  Peng Chen,et al.  Biological and chemical sensors based on graphene materials. , 2012, Chemical Society reviews.

[22]  Sergei A. Tretyakov,et al.  Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range , 2008 .

[23]  F. J. Garcia-Vidal,et al.  Fields radiated by a nanoemitter in a graphene sheet , 2011, 1104.3558.

[24]  V. Gusynin,et al.  Magneto-optical conductivity in graphene , 2007, 0705.3783.

[25]  V P Gusynin,et al.  Unusual microwave response of dirac quasiparticles in graphene. , 2006, Physical review letters.

[26]  J. Perruisseau-Carrier,et al.  Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips. , 2013, Optics express.

[27]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[28]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[29]  J. Kinaret,et al.  Edge plasmons in graphene nanostructures , 2011 .

[30]  G. Hanson,et al.  Dyadic Green's Functions for an Anisotropic, Non-Local Model of Biased Graphene , 2008, IEEE Transactions on Antennas and Propagation.

[31]  L. Falkovsky,et al.  Optical far-infrared properties of a graphene monolayer and multilayer , 2007, 0707.1386.

[32]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[33]  Christophe Caloz,et al.  Edge surface modes in magnetically biased chemically doped graphene strips , 2011 .

[34]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[35]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[36]  K. Ziegler Minimal conductivity of graphene : Nonuniversal values from the Kubo formula , 2007 .

[37]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[38]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[39]  N. M. R. Peres,et al.  Electronic properties of disordered two-dimensional carbon , 2006 .

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  Kotaro Kajikawa,et al.  Principles of Nano-Optics: Surface plasmons , 2006 .

[42]  M. Johnston,et al.  Terahertz Properties of Graphene , 2012, Journal of Infrared, Millimeter and Terahertz Waves.

[43]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[44]  V. P. Gusynin,et al.  Transport of Dirac quasiparticles in graphene: Hall and optical conductivities , 2006 .

[45]  Vladimir M. Shalaev,et al.  Optics: Beyond diffraction , 2007, Nature.

[46]  Andrew G. Glen,et al.  APPL , 2001 .

[47]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[48]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[49]  B. Hong,et al.  Optical response of large scale single layer graphene , 2011 .

[50]  Jean-Pierre Vilcot,et al.  Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces , 2013, Analytical and Bioanalytical Chemistry.

[51]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[52]  S. Thongrattanasiri,et al.  Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. , 2012, ACS nano.

[53]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[54]  Pekka Ikonen,et al.  Experimental demonstration of subwavelength field channeling at microwave frequencies using a capacitively loaded wire medium , 2006 .

[55]  K. Frederick Nikitin , 2014 .