"Optimistic" weighted Shapley rules in minimum cost spanning tree problems

Abstract We introduce optimistic weighted Shapley rules in minimum cost spanning tree problems. We define them as the weighted Shapley values of the optimistic game v+ introduced in Bergantinos and Vidal-Puga [Bergantinos, G., Vidal-Puga, J.J., forthcoming. The optimistic TU game in minimum cost spanning tree problems. International Journal of Game Theory. Available from: ]. We prove that they are obligation rules [Tijs, S., Branzei, R., Moretti, S., Norde, H., 2006. Obligation rules for minimum cost spanning tree situations and their monotonicity properties. European Journal of Operational Research 175, 121–134].

[1]  Gustavo Bergantiños,et al.  A non-cooperative approach to the cost spanning tree problem , 2004, Math. Methods Oper. Res..

[2]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[3]  Anirban Kar,et al.  Cost monotonicity, consistency and minimum cost spanning tree games , 2004, Games Econ. Behav..

[4]  G. Bergantiños,et al.  On the Shapley value of a minimum cost spanning tree problem , 2005 .

[5]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[6]  R. Prim Shortest connection networks and some generalizations , 1957 .

[7]  Anirban Kar,et al.  Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games , 2002, Games Econ. Behav..

[8]  Vincent Feltkamp,et al.  On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems , 1994 .

[9]  Daniel Granot,et al.  Minimum cost spanning tree games , 1981, Math. Program..

[10]  E. Kalai,et al.  On weighted Shapley values , 1983 .

[11]  Henk Norde,et al.  Cost Monotonic 'Construct and Charge' Rules for Connection Situations , 2005 .

[12]  Juan José Vidal Puga,et al.  The optimistic TU game in minimum cost spanning tree problems , 2007 .

[13]  Henk Norde,et al.  Minimum cost spanning tree games and population monotonic allocation schemes , 2004, Eur. J. Oper. Res..

[14]  C. G. Bird,et al.  On cost allocation for a spanning tree: A game theoretic approach , 1976, Networks.

[15]  L. Shapley A Value for n-person Games , 1988 .

[16]  Lloyd S. Shapley,et al.  Additive and non-additive set functions , 1953 .

[17]  Henk Norde,et al.  The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations , 2003 .

[18]  Daniel Granot,et al.  On the core and nucleolus of minimum cost spanning tree games , 1984, Math. Program..

[19]  Theo S. H. Driessen,et al.  The irreducible Core of a minimum cost spanning tree game , 1993, ZOR Methods Model. Oper. Res..