miRPreditor: a Novel MiRNA Target Predictor Based on SVM with Feature Analysis

MicroRNAs (miRNA) have been proven to serve as important post-transcription regulators in gene expression. To understand the function of miRNAs, it is necessary to figure out the target gene of miRNAs. Here we developed a novel miRNA target predictor, miRPredictor, which is based on support vector machine (SVM) combining with feature selection procedure. We considered different types of features including the flanking sequences of the potential targets and pattern information. The features selected were also analyzed to dig out the intrinsic mechanism of miRNA-target interaction. miRPredictor is available at http://bis.zju.edu.cn/ mirpredictor/.

[1]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[2]  I. Hofacker How microRNAs choose their targets , 2007, Nature Genetics.

[3]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[4]  S. Barik,et al.  Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells , 2008, Journal of Molecular Medicine.

[5]  Lin Lu,et al.  HIV‐1 protease cleavage site prediction based on amino acid property , 2009, J. Comput. Chem..

[6]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[7]  Yan Li,et al.  MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. , 2006, Genes & development.

[8]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[9]  Byoung-Tak Zhang,et al.  miTarget: microRNA target gene prediction using a support vector machine , 2006, BMC Bioinformatics.

[10]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[11]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[12]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[13]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[14]  Florence Friggi-Grelin,et al.  Control of Antagonistic Components of the Hedgehog Signaling Pathway by microRNAs in Drosophila , 2008, Genetics.

[15]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[16]  Xiaowei Wang,et al.  Sequence analysis Prediction of both conserved and nonconserved microRNA targets in animals , 2007 .

[17]  Jin-Hua Han,et al.  MicroRNA: Biological and Computational Perspective , 2016, Genomics, proteomics & bioinformatics.

[18]  Anton J. Enright,et al.  Prediction of microRNA targets. , 2007, Drug discovery today.

[19]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[20]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[21]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[22]  Xiaowei Wang miRDB: a microRNA target prediction and functional annotation database with a wiki interface. , 2008, RNA.

[23]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[24]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[25]  W. Filipowicz,et al.  Post-transcriptional gene silencing by siRNAs and miRNAs. , 2005, Current opinion in structural biology.

[26]  Yu-Ping Wang,et al.  MiRTif: a support vector machine-based microRNA target interaction filter , 2008, BMC Bioinformatics.

[27]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[28]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[29]  Yu-Dong Cai,et al.  Predicting N-terminal acetylation based on feature selection method. , 2008, Biochemical and biophysical research communications.

[30]  Richard W. Carthew,et al.  Silence from within: Endogenous siRNAs and miRNAs , 2005, Cell.

[31]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[32]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[33]  Oliver Hobert,et al.  Molecular architecture of a miRNA-regulated 3' UTR. , 2008, RNA.

[34]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[35]  Burton B. Yang,et al.  MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression , 2007, Proceedings of the National Academy of Sciences.