The Crystal Structure of the Manganese Superoxide Dismutase from Geobacillus stearothermophilus: Parker and Blake (1988) Revisited

Superoxide dismutase (SOD) is an almost ubiquitous metalloenzyme in aerobic organisms that catalyses the disproportionation of superoxide. Geobacillus stearothermophilus MnSOD is the only published MnSOD structure that does not have its coordinates publicly available, yet it is one of the more cited structures in the SOD literature. The structure has now been refined with modern programs, yielding a significantly improved structure which has been deposited in the Protein Data Bank. Importantly, the further refined structure reveals the presence of a catalytically important fifth ligand, water, to the metal centre, as observed in other SOD structures.

[1]  Kon-Ho Lee,et al.  Crystal structure of an iron superoxide dismutase from the pathogenic amoeba Acanthamoeba castellanii. , 2019, Acta crystallographica. Section F, Structural biology communications.

[2]  H. Yoshida,et al.  The first crystal structure of manganese superoxide dismutase from the genus Staphylococcus. , 2018, Acta crystallographica. Section F, Structural biology communications.

[3]  T. Stockner,et al.  A Single Mutation is Sufficient to Modify the Metal Selectivity and Specificity of a Eukaryotic Manganese Superoxide Dismutase to Encompass Iron , 2017, Chemistry.

[4]  A. Case,et al.  On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling , 2017, Antioxidants.

[5]  Zbigniew Dauter,et al.  Crystallography and chemistry should always go together: a cautionary tale of protein complexes with cisplatin and carboplatin. , 2015, Acta crystallographica. Section D, Biological crystallography.

[6]  P. Myler,et al.  Iron superoxide dismutases in eukaryotic pathogens: new insights from Apicomplexa and Trypanosoma structures. , 2015, Acta crystallographica. Section F, Structural biology communications.

[7]  Duochuan Li,et al.  Crystal structure and biochemical characterization of a manganese superoxide dismutase from Chaetomium thermophilum. , 2014, Biochimica et biophysica acta.

[8]  Yang Tian,et al.  Probing the metal specificity mechanism of superoxide dismutase from human pathogen Clostridium difficile. , 2014, Chemical communications.

[9]  David Baker,et al.  Advances, interactions, and future developments in the CNS, Phenix, and Rosetta structural biology software systems. , 2013, Annual review of biophysics.

[10]  I. Felli,et al.  Magic angle spinning NMR of paramagnetic proteins. , 2013, Accounts of chemical research.

[11]  D. S. St. Clair,et al.  Manganese superoxide dismutase, MnSOD and its mimics. , 2012, Biochimica et biophysica acta.

[12]  J. Valentine,et al.  Comparison of two yeast MnSODs: mitochondrial Saccharomyces cerevisiae versus cytosolic Candida albicans. , 2011, Journal of the American Chemical Society.

[13]  Vincent Breton,et al.  PDB_REDO: automated re-refinement of X-ray structure models in the PDB , 2009, Journal of applied crystallography.

[14]  S. Phillips,et al.  Purification, crystallization and X-ray structures of the two manganese superoxide dismutases from Caenorhabditis elegans , 2008, Acta crystallographica. Section F, Structural biology and crystallization communications.

[15]  Gert Vriend,et al.  PDB Improvement Starts with Data Deposition , 2007, Science.

[16]  G. Leonard,et al.  Structure of the manganese superoxide dismutase from Deinococcus radiodurans in two crystal forms. , 2006, Acta crystallographica. Section F, Structural biology and crystallization communications.

[17]  F. Separovic,et al.  Solid‐state NMR Structure Determination , 2003, IUBMB life.

[18]  G. Montoya,et al.  Crystallization and preliminary X-ray diffraction studies of the eukaryotic iron superoxide dismutase (FeSOD) from Vigna unguiculata. , 2003, Acta crystallographica. Section D, Biological crystallography.

[19]  Robert Huber,et al.  The 2.0A resolution structure of the catalytic portion of a cyanobacterial membrane-bound manganese superoxide dismutase. , 2002, Journal of molecular biology.

[20]  G. Folkers,et al.  Comparison of the Crystal Structures of the Human Manganese Superoxide Dismutase and the Homologous Aspergillus fumigatus Allergen at 2-Å Resolution1 , 2002, The Journal of Immunology.

[21]  Anne‐Frances Miller,et al.  Novel Insights into the Basis for Escherichia coli Superoxide Dismutase's Metal Ion Specificity from Mn-Substituted FeSOD and Its Very High Em† , 2001 .

[22]  C. J. Bond,et al.  Cloning, sequence and crystallographic structure of recombinant iron superoxide dismutase from Pseudomonas ovalis. , 2000, Acta crystallographica. Section D, Biological crystallography.

[23]  S. Sugio,et al.  Crystal structure of cambialistic superoxide dismutase from porphyromonas gingivalis. , 2000, European journal of biochemistry.

[24]  K. Nakayama,et al.  A change of the metal-specific activity of a cambialistic superoxide dismutase from Porphyromonas gingivalis by a double mutation of Gln-70 to Gly and Ala-142 to Gln. , 2000, The Biochemical journal.

[25]  J. W. Whittaker,et al.  Thermally Triggered Metal Binding by Recombinant Thermus thermophilus Manganese Superoxide Dismutase, Expressed as the Apo-enzyme* , 1999, The Journal of Biological Chemistry.

[26]  D. Touati,et al.  Characterization of an Atypical Superoxide Dismutase from Sinorhizobium meliloti , 1999, Journal of bacteriology.

[27]  S. Al-Karadaghi,et al.  Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: analysis of structure and thermostability. , 1999, Journal of molecular biology.

[28]  S. Knapp,et al.  Refined crystal structure of a superoxide dismutase from the hyperthermophilic archaeon Sulfolobus acidocaldarius at 2.2 A resolution. , 1999, Journal of molecular biology.

[29]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[30]  F. Parak,et al.  pH-dependent inhibition by azide and fluoride of the iron superoxide dismutase from Propionibacterium shermanii. , 1998, The Biochemical journal.

[31]  C. Vance,et al.  Spectroscopic comparisons of the pH dependencies of Fe-substituted (Mn)superoxide dismutase and Fe-superoxide dismutase. , 1998, Biochemistry.

[32]  J. W. Whittaker,et al.  Crystal structure of Escherichia coli manganese superoxide dismutase at 2.1-Å resolution , 1998, JBIC Journal of Biological Inorganic Chemistry.

[33]  Marius Schmidt,et al.  X-ray structure of the cambialistic superoxide dismutase from Propionibacterium shermanii active with Fe or Mn , 1997, JBIC Journal of Biological Inorganic Chemistry.

[34]  J. W. Whittaker,et al.  Mutagenesis of a proton linkage pathway in Escherichia coli manganese superoxide dismutase. , 1997, Biochemistry.

[35]  S H Kim,et al.  The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilus at 1.9 A resolution: structural basis for thermostability. , 1997, Journal of molecular biology.

[36]  H. Youn,et al.  A novel nickel-containing superoxide dismutase from Streptomyces spp. , 1996, The Biochemical journal.

[37]  M. Boissinot,et al.  Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. , 1996, Biochemistry.

[38]  J. Penner‐Hahn,et al.  X-ray absorption spectroscopy of the iron site in Escherichia coli Fe(III) superoxide dismutase. , 1995, Biochemistry.

[39]  K. Kobayashi,et al.  The pH-dependent changes of the enzymic activity and spectroscopic properties of iron-substituted manganese superoxide dismutase. A study on the metal-specific activity of Mn-containing superoxide dismutase. , 1995, European journal of biochemistry.

[40]  J. Cooper,et al.  X-ray structure analysis of the iron-dependent superoxide dismutase from Mycobacterium tuberculosis at 2.0 Angstroms resolution reveals novel dimer-dimer interactions. , 1994, Journal of molecular biology.

[41]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[42]  G. Borgstahl,et al.  The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles , 1992, Cell.

[43]  C. Blake,et al.  Iron‐ and manganese‐containing superoxide dismutases can be distinguished by analysis of their primary structures , 1988, FEBS letters.

[44]  C. Blake,et al.  Crystal structure of manganese superoxide dismutase from Bacillus stearothermophilus at 2.4 A resolution. , 1988, Journal of molecular biology.

[45]  I. Fridovich,et al.  Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli. , 1987, Biochemistry.

[46]  M. Martín,et al.  A Streptococcus mutans superoxide dismutase that is active with either manganese or iron as a cofactor. , 1986, The Journal of biological chemistry.

[47]  E. M. Gregory,et al.  Isolation and reconstitution of iron- and manganese-containing superoxide dismutases from Bacteroides thetaiotaomicron , 1986, Journal of bacteriology.

[48]  W. Stallings,et al.  The structure of manganese superoxide dismutase from Thermus thermophilus HB8 at 2.4-A resolution. , 1985, The Journal of biological chemistry.

[49]  G. Petsko,et al.  Structure of iron superoxide dismutase from Pseudomonas ovalis at 2.9-A resolution. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. B. Powers,et al.  Iron superoxide dismutase from Escherichia coli at 3.1-A resolution: a structure unlike that of copper/zinc protein at both monomer and dimer levels. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Bi-Cheng Wang,et al.  Crystallographic computing on an array processor , 1982 .

[52]  K. Suzuki,et al.  Cadmium, chromium, and manganese replacement for iron in iron-superoxide dismutase from Pseudomonas ovalis. , 1980, Journal of biochemistry.

[53]  Wayne A. Hendrickson,et al.  A restrained-parameter thermal-factor refinement procedure , 1980 .

[54]  S. French,et al.  On the treatment of negative intensity observations , 1978 .

[55]  F. Yamakura A study on the reconstitution of iron-superoxide dismutase from Pseudomonas ovalis. , 1978, Journal of biochemistry.

[56]  D. Banner,et al.  A multiple-counter X-ray diffractometer with equatorial geometry , 1977 .

[57]  I. Fridovich,et al.  An iron-containing superoxide dismutase from Escherichia coli. , 1973, The Journal of biological chemistry.

[58]  I. Fridovich,et al.  Superoxide dismutase from escherichia coli B. A new manganese-containing enzyme. , 1970, The Journal of biological chemistry.

[59]  I. Fridovich,et al.  Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). , 1969, The Journal of biological chemistry.

[60]  G. C. Fox,et al.  An alternative method of solving the layer scaling equations of Hamilton, Rollett and Sparks , 1966 .

[61]  J. McCord Superoxide Dismutase from Escherichia coli B , 2003 .

[62]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[63]  T. Maruyama,et al.  An azide-insensitive superoxide dismutase from a hyperthermophilic archaeon, Sulfolobus solfataricus. , 1999, Journal of biochemistry.

[64]  D. Barra,et al.  In vivo incorporation of copper into the iron‐exchangeable and manganese‐exchangable superoxide dismutase from Propionibacterium shermanii , 1994 .

[65]  J L Sussman,et al.  Constrained-restrained least-squares (CORELS) refinement of proteins and nucleic acids. , 1985, Methods in enzymology.

[66]  T. A. Jones Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. , 1985, Methods in enzymology.

[67]  C. Dapper,et al.  Isolation of iron-containing superoxide dismutase from Bacteroides fragilis: reconstitution as a Mn-containing enzyme. , 1983, Archives of biochemistry and biophysics.

[68]  R. Huber,et al.  Experimental absorption correction: results , 1969 .

[69]  G. N. Ramachandran,et al.  Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.

[70]  H. Berman,et al.  The Protein Data Bank. , 2002, Acta crystallographica. Section D, Biological crystallography.

[71]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.