Stent design parameters and crimpability.

[1]  M. Zuin,et al.  Mathematics and transcatheter aortic valve implantation: Use of computational fluid dynamics and finite element analysis. Is this the future? , 2016, International journal of cardiology.

[2]  Fangsen Cui,et al.  Design and finite element-based fatigue prediction of a new self-expandable percutaneous mitral valve stent , 2013, Comput. Aided Des..

[3]  Jochen Renner,et al.  Off-pump transapical mitral valve replacement. , 2009, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[4]  C. Kleinstreuer,et al.  Computational mechanics of Nitinol stent grafts. , 2008, Journal of biomechanics.

[5]  M. Leon,et al.  Prospects for Percutaneous Valve Therapies , 2007, Circulation.

[6]  R. Ritchie,et al.  Understanding the Deformation and Fracture of Nitinol Endovascular Stents Using In Situ Synchrotron X‐Ray Microdiffraction , 2007 .

[7]  R. Razavi,et al.  Percutaneous Pulmonary Valve Implantation in Humans: Results in 59 Consecutive Patients , 2005, Circulation.

[8]  Alec Vahanian,et al.  Percutaneous valve procedures: what is the future? , 2005, Current opinion in cardiology.

[9]  S. Al-Hassani,et al.  A method for investigating the mechanical properties of intracoronary stents using finite element numerical simulation. , 2001, International journal of cardiology.

[10]  T W Duerig,et al.  An Overview of Superelastic Stent Design , 2000, Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy.