Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox

[1]  Christian Lininger An Experimental and First Principles Study of the Energetics of Lithium Insertion into Fe 3 O 4 and γ-Fe 2 O 3 , 2017 .

[2]  J. Tarascon,et al.  Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. , 2017, Nature materials.

[3]  N. Mizuno,et al.  Electrochemical reactions and cathode properties of Fe-doped Li2O for the hermetically sealed lithium peroxide battery , 2016 .

[4]  Jun Lu,et al.  Anion-redox nanolithia cathodes for Li-ion batteries , 2016, Nature Energy.

[5]  Rahul Malik,et al.  The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. , 2016, Nature chemistry.

[6]  K. Edström,et al.  Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. , 2016, Nature chemistry.

[7]  Wenquan Lu A New Strategy to Mitigate the Initial Capacity Loss of Lithium Ion Batteries , 2016 .

[8]  A. Maignan,et al.  A new active Li-Mn-O compound for high energy density Li-ion batteries. , 2016, Nature materials.

[9]  A. Grimaud,et al.  Anionic redox processes for electrochemical devices. , 2016, Nature materials.

[10]  J. Tarascon,et al.  Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries , 2015, Science.

[11]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[12]  Eric L. Shirley,et al.  Efficient implementation of core-excitation Bethe-Salpeter equation calculations , 2015, Comput. Phys. Commun..

[13]  N. Mizuno,et al.  Charge/discharge mechanism of a new Co-doped Li2O cathode material for a rechargeable sealed lithium-peroxide battery analyzed by X-ray absorption spectroscopy , 2015 .

[14]  Maenghyo Cho,et al.  Anti-fluorite Li6CoO4 as an alternative lithium source for lithium ion capacitors: an experimental and first principles study , 2015 .

[15]  J. Tarascon,et al.  Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li4FeSbO6. , 2015, Journal of the American Chemical Society.

[16]  E. Salager,et al.  Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries , 2015, Nature Communications.

[17]  S. Kirklin,et al.  High-throughput screening of high-capacity electrodes for hybrid Li-ion-Li-O₂ cells. , 2014, Physical chemistry chemical physics : PCCP.

[18]  Yuki Yamada,et al.  A New Sealed Lithium-Peroxide Battery with a Co-Doped Li2O Cathode in a Superconcentrated Lithium Bis(fluorosulfonyl)amide Electrolyte , 2014, Scientific Reports.

[19]  Toyoki Okumura,et al.  Effect of bulk and surface structural changes in Li5FeO4 positive electrodes during first charging on subsequent lithium-ion battery performance , 2014 .

[20]  Michael M. Thackeray,et al.  Vision for Designing High-Energy, Hybrid Li Ion/Li–O2 Cells , 2013 .

[21]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[22]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[23]  G. Sawatzky,et al.  Role of oxygen holes in Li(x)CoO(2) revealed by soft X-ray spectroscopy. , 2013, Physical review letters.

[24]  Christopher S. Johnson,et al.  Characterization of Novel Lithium Battery Cathode Materials by Spectroscopic Methods: The Li5+xFeO4 System , 2013, Applied spectroscopy.

[25]  Mijung Noh,et al.  Role of Li6CoO4 Cathode Additive in Li-Ion Cells Containing Low Coulombic Efficiency Anode Material , 2012 .

[26]  Christopher S. Johnson,et al.  Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li–O2 Cells , 2011 .

[27]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[28]  J J Kas,et al.  Bethe-Salpeter equation calculations of core excitation spectra. , 2010, Physical review. B, Condensed matter and materials physics.

[29]  Christopher S. Johnson,et al.  Li2O Removal from Li5FeO4: A Cathode Precursor for Lithium-Ion Batteries† , 2010 .

[30]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[31]  N. Imanishi,et al.  Electrochemical properties and Mössbauer effect of anti-fluorite type compound, Li5FeO4 , 2005 .

[32]  H. Sakaebe,et al.  Antifluorite compounds, Li5+xFe1−xCoxO4, as a lithium intercalation host , 2005 .

[33]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[34]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[35]  G. Ceder,et al.  Phase separation in LixFePO4 induced by correlation effects , 2004, cond-mat/0404631.

[36]  N. Imanishi,et al.  Anti-fluorite type Li6CoO4, Li5FeO4, and Li6MnO4 as the cathode for lithium secondary batteries , 1999 .

[37]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[39]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[42]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.