Magnesium acceptor levels in GaN studied by photoluminescence

Magnesium doped GaN epitaxial layers were grown by metal-organic chemical vapor deposition on sapphire substrate. Energy levels of these acceptors were investigated by systematic photoluminescence measurements in the temperature range of 12–300 K. Magnesium concentration was varied from <1×1019 to higher than 5×1019 cm−3. Photoluminescence measurements were made on the as-grown and annealed samples. We have observed various transitions related to donor to acceptor and their phonon replicas, conduction band to acceptors, and free excitons. Their dependence on temperature, concentration of the magnesium impurity and annealing conditions was discussed. In our study, two important observations were made. First, very deep level luminescence was not observed even in the highly magnesium doped as-grown samples. Second, free exciton transitions including valence band splittings were observed for the first time in the Mg-doped materials, demonstrating the high quality of the samples.