Laser raman spectroscopy--new probe of myosin substructure.

Laser Raman spectroscopy is used to probe the heterogeneous substructure of the large contractile protein myosin. Some peaks are assigned to specific chemical groups of the molecule; others, notably the conformationally sensitive amide III vibrations, provide information on the structurally distinct regions of the molecule. Deuteration of the NH groups is instrumental in the assignment of these vibrational modes. The relative intensities of bands typical of alpha-helical conformations (near 1265 and 1304 cm-1) and bands associated with nonhelical structure (near 1244 cm-1) are sensitive indicators of myosin substructure and represent potentially useful probes of conformational changes.

[1]  T. Shimanouchi,et al.  Normal Vibrations of N‐Methylacetamide , 1958 .

[2]  A. Szent-Gyorgyi,et al.  Trypsin digestion of muscle proteins. I. Ultracentrifugal analysis of the process. , 1953, The Journal of biological chemistry.

[3]  H. Stanley,et al.  NONACTIN AND ITS ALKALI COMPLEXES--A Raman spectroscopic study. , 1974, Biochemical and biophysical research communications.

[4]  J. Gergely,et al.  Fragmentation of myosin by chymotrypsin. , 1955, The Journal of biological chemistry.

[5]  D. O'shea,et al.  Laser Raman spectroscopy and the conformation of insulin and proinsulin. , 1972, Journal of molecular biology.

[6]  H. Stanley,et al.  Raman spectroscopic study of the valinomycin--KSCN complex. , 1974, Journal of molecular biology.

[7]  H. Stanley,et al.  Raman Spectroscopic Investigation of Gramicidin A' Conformations , 1974, Science.

[8]  J. Gergely,et al.  Pyrophosphate binding to and adenosine triphosphatase activity of myosin and its proteolytic fragments. Implications for the substructure of myosin. , 1969, The Journal of biological chemistry.

[9]  R. Lord,et al.  Laser-excited Raman spectroscopy of biomolecules. VI. Some polypeptides as conformational models. , 1974, Journal of the American Chemical Society.

[10]  L. Gershman,et al.  Subunit structure of myosin. 3. A proposed model for rabbit skeletal myosin. , 1969, The Journal of biological chemistry.

[11]  J L Lippert,et al.  Laser Raman studies of conformational variations of poly‐L‐lysine , 1973, Biopolymers.

[12]  W. Peticolas,et al.  Raman spectra and the phonon dispersion of polyglycine. , 1970, The Journal of chemical physics.

[13]  M. C. Tobin Raman Spectra of Crystalline Lysozyme, Pepsin, and Alpha Chymotrypsin , 1968, Science.

[14]  S. Lowey,et al.  Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. , 1969, Journal of molecular biology.

[15]  N. Yu,et al.  Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids. , 1970, Journal of molecular biology.

[16]  S. Himmelfarb,et al.  Studies on the subunit structure of myosin. , 1970, The Journal of biological chemistry.

[17]  H E Huxley,et al.  The Mechanism of Muscular Contraction , 1965, Scientific American.

[18]  N. Yu,et al.  Laser-excited Raman spectroscopy of biomolecules: II. Native ribonuclease and α-chymotrypsin☆☆☆ , 1970 .