Graphene-Si Schottky IR Detector

This paper reports on photodetection properties of the graphene-Si schottky junction by measuring current-voltage characteristics under 1.55-μm excitation laser. The measurements have been done on a junction fabricated by depositing mechanically exfoliated natural graphite on top of the pre-patterned silicon substrate. The electrical Schottky barrier height is estimated to be (0.44-0.47) eV with a minimum responsivity of 2.8 mA/W corresponding to an internal quantum efficiency of 10%, which is almost an order of magnitude larger than regular Schottky junctions. A possible explanation for the large quantum efficiency related to the 2-D nature of graphene is discussed. Large quantum efficiency, room temperature IR detection, ease of fabrication along with compatibility with Si devices can open a doorway for novel graphene-based photodetectors.

[1]  D. Jena,et al.  Efficient terahertz electro-absorption modulation employing graphene plasmonic structures , 2012, 1211.4176.

[2]  N. Xi,et al.  Uncooled infrared sensing using graphene , 2011, 2011 IEEE Nanotechnology Materials and Devices Conference.

[3]  W. Knap,et al.  Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects , 2011 .

[4]  Antoni Rogalski,et al.  Narrow-Gap Semiconductors for Infrared Detectors , 2011 .

[5]  Takashi Taniguchi,et al.  Hot Carrier–Assisted Intrinsic Photoresponse in Graphene , 2011, Science.

[6]  V. Ryzhii,et al.  Characteristics of p–i–n Terahertz and Infrared Photodiodes Based on Multiple Graphene Layer Structures , 2011 .

[7]  S. Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2011, Physical review letters.

[8]  Chia-Chi Chang,et al.  Graphene-silicon Schottky diodes. , 2011, Nano letters.

[9]  Hongwei Zhu,et al.  Chemical Doping and Enhanced Solar Energy Conversion of Graphene/Silicon Junctions , 2010, 1012.5730.

[10]  Hongkun Park,et al.  Gate-activated photoresponse in a graphene p-n junction. , 2010, Nano letters.

[11]  V. Ryzhii,et al.  Analytical Device Model for Graphene Bilayer Field-Effect Transistors Using Weak Nonlocality Approximation * , 2010, Graphene-Based Terahertz Electronics and Plasmonics.

[12]  Yi Jia,et al.  Graphene‐On‐Silicon Schottky Junction Solar Cells , 2010, Advanced materials.

[13]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[14]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[15]  V. Ryzhii,et al.  Terahertz and Infrared Photodetection Using p-i-n Multiple-Graphene-Layer Structures * , 2009, Graphene-Based Terahertz Electronics and Plasmonics.

[16]  F. Xia,et al.  Ultrafast graphene photodetector. , 2009, Nature nanotechnology.

[17]  A. M. van der Zande,et al.  Photo-thermoelectric effect at a graphene interface junction. , 2009, Nano letters.

[18]  Jiwoong Park,et al.  Imaging of photocurrent generation and collection in single-layer graphene. , 2009, Nano letters.

[19]  F. Xia,et al.  Photocurrent imaging and efficient photon detection in a graphene transistor. , 2009, Nano letters.

[20]  C. Berger,et al.  Ultrafast Relaxation of Excited Dirac Fermions in Epitaxial Graphene Using Optical Differential Transmission Spectroscopy , 2008 .

[21]  F. Rana,et al.  Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. , 2008, Nano letters.

[22]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[23]  C. Berger,et al.  Hot Dirac Fermions in Epitaxial Graphene , 2008, 0803.2883.

[24]  D. Veksler,et al.  Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible , 2008, 0801.3302.

[25]  G. Assanto,et al.  Low Dark-Current Germanium-on-Silicon Near-Infrared Detectors , 2007, IEEE Photonics Technology Letters.

[26]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[27]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[28]  F. Raissi A possible explanation for high quantum efficiency of PtSi/porous Si Schottky detectors , 2003 .

[29]  Gianlorenzo Masini,et al.  2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 μm , 2003 .

[30]  M. M. Far,et al.  Highly sensitive PtSi/porous Si Schottky detectors , 2002 .

[31]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[32]  V. E. Vickers,et al.  Model of schottky barrier hot-electron-mode photodetection. , 1971, Applied optics.

[33]  Vikram L. Dalal,et al.  Simple Model for Internal Photoemission , 1971 .

[34]  G. Coppola,et al.  Near-Infrared All-Silicon Photodetectors , 2012 .

[35]  Kazumi Wada,et al.  Monolithic Silicon Microphotonics , 2004 .

[36]  J. Silverman,et al.  The theory of hot-electron photoemission in Schottky-barrier IR detectors , 1985, IEEE Transactions on Electron Devices.