Flimma: a federated and privacy-aware tool for differential gene expression analysis

[1]  David B. Blumenthal,et al.  The AIMe registry for artificial intelligence in biomedical research , 2021, Nature Methods.

[2]  Patrick G. A. Pedrioli,et al.  Diagnostics and correction of batch effects in large‐scale proteomic studies: a tutorial , 2021, Molecular systems biology.

[3]  David B. Blumenthal,et al.  On the Privacy of Federated Pipelines , 2021, SIGIR.

[4]  L. Ohno-Machado,et al.  Privacy challenges and research opportunities for genomic data sharing , 2020, Nature Genetics.

[5]  Shuang Wang,et al.  A novel privacy-preserving federated genome-wide association study framework and its application in identifying potential risk variants in ankylosing spondylitis , 2020, Briefings Bioinform..

[6]  Jeong Eon Lee,et al.  Clinical Characteristics and Exploratory Genomic Analyses of Germline BRCA1 or BRCA2 Mutations in Breast Cancer , 2020, Molecular Cancer Research.

[7]  Reza Nasirigerdeh,et al.  sPLINK: A Federated, Privacy-Preserving Tool as a Robust Alternative to Meta-Analysis in Genome-Wide Association Studies , 2020, bioRxiv.

[8]  S. Anders,et al.  DEqMS: A Method for Accurate Variance Estimation in Differential Protein Expression Analysis. , 2020, Molecular & cellular proteomics : MCP.

[9]  Shafi Goldwasser,et al.  Secure large-scale genome-wide association studies using homomorphic encryption , 2020, Proceedings of the National Academy of Sciences.

[10]  David P. Nickerson,et al.  Improving reproducibility in computational biology research , 2020, PLoS Comput. Biol..

[11]  Micah J. Sheller,et al.  The future of digital health with federated learning , 2020, npj Digital Medicine.

[12]  Daniel Toro-Domínguez,et al.  A survey of gene expression meta-analysis: methods and applications , 2020, Briefings Bioinform..

[13]  Eric C. Rouchka,et al.  Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies , 2020, BMC Genomics.

[14]  Giovanni Parmigiani,et al.  ComBat-seq: batch effect adjustment for RNA-seq count data , 2020, bioRxiv.

[15]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[16]  X. Zhang,et al.  Statistical evaluation of diet-microbe associations , 2019, BMC Microbiology.

[17]  A. Giobbie-Hurder,et al.  Impact of a Pre-Operative Exercise Intervention on Breast Cancer Proliferation and Gene Expression: Results from the Pre-Operative Health and Body (PreHAB) Study , 2019, Clinical Cancer Research.

[18]  Adrian V. Lee,et al.  An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics , 2018, Cell.

[19]  David J. Wu,et al.  Secure genome-wide association analysis using multiparty computation , 2018, Nature Biotechnology.

[20]  Juliana Costa-Silva,et al.  RNA-Seq differential expression analysis: An extended review and a software tool , 2017, PloS one.

[21]  Sarvar Patel,et al.  Practical Secure Aggregation for Privacy-Preserving Machine Learning , 2017, IACR Cryptol. ePrint Arch..

[22]  Kathleen M Jagodnik,et al.  Massive mining of publicly available RNA-seq data from human and mouse , 2017, Nature Communications.

[23]  Patrick Rubin-Delanchy,et al.  Choosing between methods of combining p-values , 2017, 1707.06897.

[24]  K. Hansen,et al.  Joint Bounding of Peaks Across Samples Improves Differential Analysis in Mass Spectrometry-Based Metabolomics , 2017, Analytical chemistry.

[25]  Xintao Wu,et al.  An overview of human genetic privacy , 2017, Annals of the New York Academy of Sciences.

[26]  Johanna Hardin,et al.  Selecting between‐sample RNA‐Seq normalization methods from the perspective of their assumptions , 2016, Briefings Bioinform..

[27]  Lior Pachter,et al.  Differential analysis of RNA-seq incorporating quantification uncertainty , 2016, Nature Methods.

[28]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[29]  Joel S. Parker,et al.  Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer , 2016, Bioinform..

[30]  M. Gerstein,et al.  Quantification of private information leakage from phenotype-genotype data: linking attacks , 2016, Nature Methods.

[31]  E. Hovig,et al.  Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses , 2015, Biostatistics.

[32]  Arcadi Navarro,et al.  The European Genome-phenome Archive of human data consented for biomedical research , 2015, Nature Genetics.

[33]  J. Zyprych-Walczak,et al.  The Impact of Normalization Methods on RNA-Seq Data Analysis , 2015, BioMed research international.

[34]  Ingo Ruczinski,et al.  Detecting Significant Changes in Protein Abundance. , 2015, EuPA open proteomics.

[35]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[36]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[37]  Sheng Li,et al.  Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study , 2014, Nature Biotechnology.

[38]  S. Dudoit,et al.  Normalization of RNA-seq data using factor analysis of control genes or samples , 2014, Nature Biotechnology.

[39]  David P. Kreil,et al.  A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium , 2014, Nature Biotechnology.

[40]  Brian S. Roberts,et al.  Recurrent read-through fusion transcripts in breast cancer , 2014, Breast Cancer Research and Treatment.

[41]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[42]  Masato Kimura,et al.  NCBI’s Database of Genotypes and Phenotypes: dbGaP , 2013, Nucleic Acids Res..

[43]  László Csirmaz,et al.  Infinite secret sharing – Examples , 2013, J. Math. Cryptol..

[44]  C. Mason,et al.  Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data , 2013, Genome Biology.

[45]  Latanya Sweeney,et al.  Identifying Participants in the Personal Genome Project by Name , 2013, ArXiv.

[46]  Charlotte Soneson,et al.  A comparison of methods for differential expression analysis of RNA-seq data , 2013, BMC Bioinformatics.

[47]  Eran Halperin,et al.  Identifying Personal Genomes by Surname Inference , 2013, Science.

[48]  Yan Lin,et al.  An R package suite for microarray meta-analysis in quality control, differentially expressed gene analysis and pathway enrichment detection , 2012, Bioinform..

[49]  K. Hao,et al.  Bayesian method to predict individual SNP genotypes from gene expression data , 2012, Nature Genetics.

[50]  Kenneth K. Lopiano,et al.  RNA-seq: technical variability and sampling , 2011, BMC Genomics.

[51]  David M. Simcha,et al.  Tackling the widespread and critical impact of batch effects in high-throughput data , 2010, Nature Reviews Genetics.

[52]  Thomas J. Hardcastle,et al.  baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data , 2010, BMC Bioinformatics.

[53]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[54]  Sandrine Dudoit,et al.  Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments , 2010, BMC Bioinformatics.

[55]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[56]  Jean-Louis Foulley,et al.  Gene expression Moderated effect size and P-value combinations for microarray meta-analyses , 2009 .

[57]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[58]  A. Oshlack,et al.  Transcript length bias in RNA-seq data confounds systems biology , 2009, Biology Direct.

[59]  John P A Ioannidis,et al.  Meta-analysis in genome-wide association studies. , 2009, Pharmacogenomics.

[60]  Jing Zhu,et al.  Apparently low reproducibility of true differential expression discoveries in microarray studies , 2008, Bioinform..

[61]  Zhiyuan Hu,et al.  Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors , 2007, Genome Biology.

[62]  Rainer Breitling,et al.  RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis , 2006, Bioinform..

[63]  L. Ein-Dor,et al.  Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Cynthia Dwork,et al.  Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.

[65]  M. Whitlock Combining probability from independent tests: the weighted Z‐method is superior to Fisher's approach , 2005, Journal of evolutionary biology.

[66]  Rainer Breitling,et al.  Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments , 2004, FEBS letters.

[67]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[68]  Sangsoo Kim,et al.  Combining multiple microarray studies and modeling interstudy variation , 2003, ISMB.

[69]  S. Thompson,et al.  Quantifying heterogeneity in a meta‐analysis , 2002, Statistics in medicine.

[70]  Javier Cabrera,et al.  Analysis of Data From Viral DNA Microchips , 2001 .

[71]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[73]  Monther Alhamdoosh,et al.  RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR , 2016, F1000Research.

[74]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[75]  R. Breitling,et al.  A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments , 2008, Bioinform..

[76]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[77]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.