Aerosol-based functional nanocomposite coating process for large surface areas

[1]  F. Kruis,et al.  Influence of the PVD process conditions on the incorporation of TiN nanoparticles into magnetron sputtered CrN thin films , 2021 .

[2]  M. Mahesha,et al.  Characterization of transparent p-type Cu:ZnS thin films grown by spray pyrolysis technique , 2020 .

[3]  P. Panjan,et al.  Review of Growth Defects in Thin Films Prepared by PVD Techniques , 2020, Coatings.

[4]  C. Y. Chee Nanomaterials and nanotechnology for composites: synthesis, structure, properties and new application opportunities , 2020, Biointerface Research in Applied Chemistry.

[5]  W. Tillmann,et al.  Combination of an atmospheric pressured arc reactor and a magnetron sputter device for the synthesis of novel nanostructured thin films , 2019, Thin Solid Films.

[6]  F. Kruis,et al.  Development of a high flow rate aerodynamic lens system for inclusion of nanoparticles into growing PVD films to form nanocomposite thin films , 2019, Aerosol Science and Technology.

[7]  S. Mangin,et al.  Synthesis of iron oxide films by reactive magnetron sputtering assisted by plasma emission monitoring , 2019, Materials Chemistry and Physics.

[8]  S. Basavarajappa,et al.  Electrodeposition of Ni-nano composite coatings: a review , 2018, Inorganic and Nano-Metal Chemistry.

[9]  José Luis Míguez,et al.  Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands , 2018, Coatings.

[10]  Sabu Thomas,et al.  Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites , 2018 .

[11]  M. P. Saravanakumar,et al.  A review on the classification, characterisation, synthesis of nanoparticles and their application , 2017 .

[12]  M. Shimada,et al.  Fabrication of TiO2‒Ag nanocomposite thin films via one-step gas-phase deposition , 2017 .

[13]  S. Mangin,et al.  Influence of the Cr and Ni concentration in CoCr and CoNi alloys on the structural and magnetic properties , 2017 .

[14]  Youri Rousseau Hybridation des technologies de jets de nanoparticules et de PVD pour la réalisation d’architectures nanocomposites fonctionnelles , 2016 .

[15]  D. Jeong,et al.  Wafer-scale growth of MoS2 thin films by atomic layer deposition. , 2016, Nanoscale.

[16]  N. Martin,et al.  Enhanced tunability of the composition in silicon oxynitride thin films by the reactive gas pulsing process , 2014 .

[17]  T. Goto,et al.  Preparation of Al2O3–ZrO2 nanocomposite films by laser chemical vapour deposition , 2014 .

[18]  Kenneth A. Smith,et al.  Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer , 2013 .

[19]  N. Fenineche,et al.  Microstructure and magnetic properties of Ni3Fe solid solution thin films deposited by DC-magnetron sputtering , 2013 .

[20]  B. Gnade,et al.  Adjustable structural, optical and dielectric characteristics in sol–gel PMMA–SiO2 hybrid films , 2013 .

[21]  N. Martin,et al.  Silicon oxynitride thin films synthesised by the reactive gas pulsing process using rectangular pulses , 2011 .

[22]  P. Patil,et al.  Enhanced photoelectrochemical performance of Ag–ZnO thin films synthesized by spray pyrolysis technique , 2011 .

[23]  S. Luo,et al.  Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films. , 2011, Small.

[24]  D. Dutta,et al.  Preparation of large scale photocatalytic TiO2 films by the sol-gel process , 2010 .

[25]  Günter Bräuer,et al.  Magnetron sputtering – Milestones of 30 years , 2010 .

[26]  D. M. Mattox,et al.  Handbook of physical vapor deposition (PVD) processing , 2010 .

[27]  A. Anders A structure zone diagram including plasma based deposition and ion etching - eScholarship , 2010 .

[28]  D. Babonneau,et al.  In situ optical spectroscopy during deposition of Ag:Si3N4 nanocomposite films by magnetron sputtering , 2010 .

[29]  M. Endo,et al.  Cu–MWCNT Composite Films Fabricated by Electrodeposition , 2010 .

[30]  J. Pierson,et al.  Properties of nanocrystalline and nanocomposite WxZr1−x thin films deposited by co-sputtering , 2009 .

[31]  Kestur Gundappa Satyanarayana,et al.  Nanocomposites: synthesis, structure, properties and new application opportunities , 2009 .

[32]  Zhifu Liu,et al.  Influence of effective surface area on gas sensing properties of WO3 sputtered thin films , 2009 .

[33]  Alessandro Martucci,et al.  Gold Nanoparticle‐Doped TiO2 Semiconductor Thin Films: Gas Sensing Properties , 2008 .

[34]  Donggeun Lee,et al.  Development and experimental evaluation of aerodynamic lens as an aerosol inlet of single particle mass spectrometry , 2008 .

[35]  A. Shafiekhani,et al.  Co-deposition process of RF-Sputtering and RF-PECVD of copper/carbon nanocomposite films , 2008 .

[36]  Kenneth A. Smith,et al.  Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer , 2007 .

[37]  O. Ilegbusi,et al.  Sol–gel derived ZnO/PVP nanocomposite thin film for superoxide radical sensor , 2007 .

[38]  Paolo Milani,et al.  Cluster beam deposition: a tool for nanoscale science and technology , 2006 .

[39]  C. Low,et al.  Electrodeposition of composite coatings containing nanoparticles in a metal deposit , 2006 .

[40]  H. Barshilia,et al.  Superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current unbalanced magnetron sputtering , 2006 .

[41]  J. Kimling,et al.  Turkevich method for gold nanoparticle synthesis revisited. , 2006, The journal of physical chemistry. B.

[42]  I. Parkin,et al.  Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films. , 2006, Journal of the American Chemical Society.

[43]  P. Milani,et al.  Libraries of cluster-assembled titania films for chemical sensing , 2005 .

[44]  L. Gauckler,et al.  Thin Film Deposition Using Spray Pyrolysis , 2005 .

[45]  Sang‐Chul Jung,et al.  Effect of TiO2 thin film thickness and specific surface area by low-pressure metal–organic chemical vapor deposition on photocatalytic activities , 2005 .

[46]  A. Martucci,et al.  NiO-SiO2 Sol-Gel Nanocomposite Films for Optical Gas Sensor , 2003 .

[47]  J. Heitmann,et al.  Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers , 2002 .

[48]  Zhenyuan Zhang,et al.  Size-dependent melting of silica-encapsulated gold nanoparticles. , 2002, Journal of the American Chemical Society.

[49]  K. Seshan Handbook of Thin Film Deposition Techniques Principles, Methods, Equipment and Applications, Second Editon , 2002 .

[50]  J. Heitmann,et al.  Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach , 2002 .

[51]  G. U. Kulkarni,et al.  Size-dependent chemistry: properties of nanocrystals. , 2002, Chemistry.

[52]  A. Billard,et al.  Stable and unstable conditions of the sputtering mode by modulating at low frequency the current of a magnetron discharge , 1997 .

[53]  M. Hampden‐Smith,et al.  Chemical vapor deposition of metals: Part 1. An overview of CVD processes , 1995 .

[54]  David B. Kittelson,et al.  Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions , 1995 .

[55]  Peng Liu,et al.  Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions , 1995 .

[56]  Mark R. Kozlowski,et al.  Characterization of defect geometries in multilayer optical coatings , 1994, Laser Damage.

[57]  H.‐J. Anklam,et al.  Computer simulation of hillock growth , 1991 .

[58]  S. Rossnagel Sputtered atom transport processes , 1990 .

[59]  Larry L. Hench,et al.  The sol-gel process , 1990 .

[60]  H. Dislich Sol-gel: Science, processes and products , 1986 .

[61]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[62]  John D. Mackenzie,et al.  Glasses from melts and glasses from gels, a comparison , 1982 .

[63]  J. Thornton High Rate Thick Film Growth , 1977 .