No-boundary proposal in biaxial Bianchi IX minisuperspace

We implement the no-boundary proposal for the wave function of the universe in an exactly solvable Bianchi IX minisuperspace model with two scale factors. We extend our earlier work (Phys. Rev. Lett. 121, 081302, 2018 / arXiv:1804.01102) to include the contribution from the $\mathbb{C}\text{P}^2 \setminus B^4$ topology. The resulting wave function yields normalizable probabilities and thus fits into a predictive framework for semiclassical quantum cosmology. We find that the amplitude is low for large anisotropies. In the isotropic limit the usual Hartle-Hawking wave function for the de Sitter minisuperspace model is recovered. Inhomogeneous perturbations in an extended minisuperspace are shown to be initially in their ground state. We also demonstrate that the precise mathematical implementation of the no-boundary proposal as a functional integral in minisuperspace depends on detailed aspects of the model, including the choice of gauge-fixing. This shows in particular that the choice of contour cannot be fundamental, adding weight to the recent proposal that the semiclassical no-boundary wave function should be defined solely in terms of a collection of saddle points. We adopt this approach in most of this paper. Finally we show that the semiclassical tunneling wave function of the universe is essentially equal to the no-boundary state in this particular minisuperspace model, at least in the subset of the classical domain where the former is known.

[1]  A. Di Tucci,et al.  No-Boundary Proposal as a Path Integral with Robin Boundary Conditions. , 2019, Physical review letters.

[2]  A. Vilenkin,et al.  Tunneling wave function of the universe. II. The backreaction problem , 2018, Physical Review D.

[3]  J. Hartle,et al.  What is the no-boundary wave function of the Universe? , 2018, Physical Review D.

[4]  A. Anabalón,et al.  Four-dimensional traversable wormholes and bouncing cosmologies in vacuum , 2018, Journal of High Energy Physics.

[5]  A. Vilenkin,et al.  Tunneling wave function of the universe , 2018, Physical Review D.

[6]  N. Turok,et al.  Inconsistencies of the New No-Boundary Proposal , 2018, Universe.

[7]  J. Hartle,et al.  Damped Perturbations in the No-Boundary State. , 2018, Physical review letters.

[8]  N. Turok,et al.  No rescue for the no boundary proposal: Pointers to the future of quantum cosmology , 2017, 1708.05104.

[9]  J. Hartle,et al.  Real no-boundary wave function in Lorentzian quantum cosmology , 2017, 1705.05340.

[10]  N. Turok,et al.  No Smooth Beginning for Spacetime. , 2017, Physical review letters.

[11]  N. Turok,et al.  Lorentzian quantum cosmology , 2017, 1703.02076.

[12]  T. Hertog,et al.  The NUTs and Bolts of squashed holography , 2016, 1610.01497.

[13]  T. Hertog Predicting a prior for Planck , 2013, 1305.6135.

[14]  J. Hartle,et al.  Holographic no-boundary measure , 2011, 1111.6090.

[15]  J. Hartle,et al.  Arrows of Time in the Bouncing Universes of the No-boundary Quantum State , 2011, 1104.1733.

[16]  J. Andersen,et al.  Analytic continuation of Chern-Simons theory , 2011 .

[17]  J. Hartle,et al.  Local observation in eternal inflation. , 2010, Physical review letters.

[18]  E. Witten Analytic Continuation Of Chern-Simons Theory , 2010, 1001.2933.

[19]  J. Hartle,et al.  No-boundary measure in the regime of eternal inflation , 2010, 1001.0262.

[20]  J. Halliwell Probabilities in Quantum Cosmological Models: A Decoherent Histories Analysis Using a Complex Potential , 2009 .

[21]  J. Hartle,et al.  Classical universes of the no-boundary quantum state , 2008, 0803.1663.

[22]  J. Hartle,et al.  No-boundary measure of the universe. , 2007, Physical review letters.

[23]  M. Akbar Classical boundary-value problem in Riemannian quantum gravity and Taub-Bolt-anti-de Sitter geometries , 2003, gr-qc/0301007.

[24]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[25]  R. Sorkin,et al.  Instantons and unitarity in quantum cosmology with fixed four-volume , 1998, gr-qc/9805101.

[26]  Vilenkin Approaches to quantum cosmology. , 1994, Physical review. D, Particles and fields.

[27]  Laflamme,et al.  Origin of time asymmetry. , 1993, Physical review. D, Particles and fields.

[28]  Laflamme,et al.  Lapse integration in quantum cosmology. , 1991, Physical review. D, Particles and fields.

[29]  Halliwell,et al.  Path-integral quantum cosmology: A class of exactly soluble scalar-field minisuperspace models with exponential potentials. , 1991, Physical review. D, Particles and fields.

[30]  J. Louko,et al.  Biaxial Bianchi type IX quantum cosmology , 1991 .

[31]  J. Hartle,et al.  Wave functions constructed from an invariant sum over histories satisfy constraints. , 1991, Physical review. D, Particles and fields.

[32]  J. Halliwell INTRODUCTORY LECTURES ON QUANTUM COSMOLOGY , 1991 .

[33]  Gibbons,et al.  Real tunneling geometries and the large-scale topology of the universe. , 1990, Physical review. D, Particles and fields.

[34]  Brown,et al.  Lorentzian path integral for minisuperspace cosmology. , 1990, Physical review. D, Particles and fields.

[35]  J. Hartle,et al.  Integration contours for the no-boundary wave function of the universe. , 1990, Physical review. D, Particles and fields.

[36]  Halliwell,et al.  Steepest-descent contours in the path-integral approach to quantum cosmology. III. A general method with applications to anisotropic minisuperspace models. , 1990, Physical review. D, Particles and fields.

[37]  Myers,et al.  Multiple-sphere configurations in the path-integral representation of the wave function of the Universe. , 1989, Physical review. D, Particles and fields.

[38]  T. P. Singh,et al.  Notes on Semiclassical Gravity , 1989 .

[39]  Halliwell,et al.  Steepest-descent contours in the path-integral approach to quantum cosmology. II. Microsuperspace. , 1989, Physical review. D, Particles and fields.

[40]  A. Vilenkin,et al.  Tunneling wavefunction for an anisotropic universe , 1989 .

[41]  J. Louko,et al.  Steepest-descent contours in the path-integral approach to quantum cosmology. I. The de Sitter minisuperspace model. , 1989, Physical review. D, Particles and fields.

[42]  Vilenkin Interpretation of the wave function of the Universe. , 1989, Physical review. D, Particles and fields.

[43]  Halliwell,et al.  Derivation of the Wheeler-DeWitt equation from a path integral for minisuperspace models. , 1988, Physical review. D, Particles and fields.

[44]  J. Louko Canonising the Hartle-Hawking proposal , 1988 .

[45]  Vachaspati.,et al.  Uniqueness of the tunneling wave function of the Universe. , 1988, Physical review. D, Particles and fields.

[46]  I. Moss Quantum cosmology and the self observing universe , 1988 .

[47]  Halliwell Correlations in the wave function of the Universe. , 1987, Physical review. D, Particles and fields.

[48]  Amsterdamski Wave function of an anisotropic universe. , 1985, Physical review. D, Particles and fields.

[49]  I. Moss,et al.  The anisotropy of the universe , 1985 .

[50]  Halliwell,et al.  Origin of structure in the Universe. , 1985, Physical review. D, Particles and fields.

[51]  J. Hartle Simplicial minisuperspace I. General discussion , 1985 .

[52]  T. Banks TCP, quantum gravity, the cosmological constant and all that... , 1985 .

[53]  S. Hawking,et al.  The Isotropy of the Universe , 1984 .

[54]  S. Hawking The Quantum State of the Universe , 1984 .

[55]  A. Vilenkin Quantum Creation of Universes , 1984 .

[56]  James B. Hartle,et al.  Wave Function of the Universe , 1983 .

[57]  Alexander Vilenkin,et al.  Creation of Universes from Nothing , 1982 .

[58]  C. DeWitt-Morette,et al.  Techniques and Applications of Path Integration , 1981 .

[59]  V. Rubakov,et al.  CANONICAL QUANTIZATION OF GRAVITY AND QUANTUM FIELD THEORY IN CURVED SPACE-TIME , 1979 .

[60]  U. Gerlach,et al.  Homogeneous Collapsing Star: Tensor and Vector Harmonics for Matter and Field Asymmetries , 1978 .

[61]  A. Hanson,et al.  Asymptotically flat self-dual solutions to euclidean gravity , 1978 .

[62]  Stephen W. Hawking,et al.  Path Integral Derivation of Black Hole Radiance , 1976 .

[63]  B. Hu,et al.  Scalar waves in the mixmaster universe. I. The Helmholtz equation in a fixed background , 1973 .

[64]  B. Carter Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s Equations , 1968 .

[65]  C. Winter The asymmetric rotator in quantum mechanics , 1954 .

[66]  S. Wang,et al.  On the Asymmetrical Top in Quantum Mechanics , 1929 .

[67]  I. Rabi,et al.  The Symmetrical Top in the Undulatory Mechanics , 1926, Nature.

[68]  H. Rademacher,et al.  Die Quantelung des symmetrischen Kreisels nach Schrödingers Undulationsmechanik , 1926 .