Non-Asymptotic Confidence Sets for the Parameters of Linear Transfer Functions

We consider the problem of constructing confidence sets for the parameters of input-output transfer functions based on observed data. The assumptions on the noise affecting the system are reduced to a minimum; the noise can virtually be anything, but in return the user must be able to select the input signal. In this paper a procedure for solving this problem is developed in the general framework of leave-out sign-dominant confidence regions. The procedure returns confidence regions that are guaranteed to contain the true transfer function with a user-chosen probability for any finite data set.

[1]  Erik Weyer,et al.  Non-asymptotic quality assessment of generalised FIR models with periodic inputs , 2004, Autom..

[2]  M.C. Campi,et al.  Non-asymptotic confidence sets for input-output transfer functions , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[3]  A. Vicino,et al.  Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..

[4]  Bo Wahlberg,et al.  Orthonormal Basis Functions in Time and Frequency Domain: Hambo Transform Theory , 2003, SIAM J. Control. Optim..

[5]  Andrea Garulli,et al.  Conditional central algorithms for worst case set-membership identification and filtering , 2000, IEEE Trans. Autom. Control..

[6]  R. Tempo,et al.  Membership set estimators: size, optimal inputs, complexity and relations with least squares , 1995 .

[7]  Bo Wahlberg,et al.  Parametric Signal Modelling using Laguerre Filters , 1993 .

[8]  Lennart Ljung,et al.  Using the bootstrap to estimate the variance in the case of undermodeling , 2002, IEEE Trans. Autom. Control..

[9]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[10]  Erik Weyer,et al.  Guaranteed non-asymptotic confidence regions in system identification , 2005, Autom..

[11]  Erik Weyer,et al.  Non-asymptotic confidence ellipsoids for the least-squares estimate , 2002, Autom..

[12]  Laura Giarré,et al.  Identification of approximated hammerstein models in a worst-case setting , 2002, IEEE Trans. Autom. Control..

[13]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[14]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[15]  Erik Weyer,et al.  Finite sample properties of system identification methods , 2002, IEEE Trans. Autom. Control..

[16]  Erik Weyer,et al.  IDENTIFICATION WITH FINITELY MANY DATA POINTS: THE LSCR APPROACH , 2006 .

[17]  Er-Wei Bai,et al.  Bounded-error parameter estimation: Noise models and recursive algorithms , 1996, Autom..

[18]  S. Bittanti,et al.  Assessing the quality of identified models through the asymptotic theory - when is the result reliable? , 2004, Autom..

[19]  Laura Giarré,et al.  Model quality evaluation in set membership identification , 1997, Autom..

[20]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[21]  Marco Lovera,et al.  Bootstrap-based estimates of uncertainty in subspace identification methods , 2000, Autom..

[22]  B. Wahlberg System identification using Laguerre models , 1991 .

[23]  Sergio Bittanti,et al.  The asymptotic model quality assessment for instrumental variable identification revisited , 2006, Syst. Control. Lett..