On the uniqueness of a rate-independent plasticity model for single crystals

This paper presents the uniqueness and existence conditions for a rate-independent plasticity model for single crystals under a general stress state. The model is based on multiple slips on three-dimensional slip systems. The uniqueness condition for the plastic slips in a single crystal with nonlinear hardening is derived using the implicit function theorem. The uniqueness condition is the non-singularity of a matrix defined by the Schmid tensors, the elasticity, and the hardening rates of the slip systems. When this matrix becomes singular, the limitations on the loading paths that can be accommodated by the active slip systems (i.e., the existence conditions) are also given explicitly. For the compatible loading paths, a particular solution is selected by requiring the solution vector to be orthogonal to the null space of the singular coefficient matrix. The paper also presents a fully implicit algorithm for the plasticity model. Numerical examples of an fcc copper single crystal under cyclic loadings (pure shear and uniaxial strain) are presented to demonstrate the main features of the algorithm.

[1]  Michael Ortiz,et al.  Computational modelling of single crystals , 1993 .

[2]  Georges Cailletaud,et al.  On the selection of active slip systems in crystal plasticity , 2005 .

[3]  Masato Kawamukai,et al.  A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals , 2007 .

[4]  Zhen Chen,et al.  One-Dimensional Softening With Localization , 1986 .

[5]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[6]  L. Anand,et al.  Crystallographic texture evolution in bulk deformation processing of FCC metals , 1992 .

[7]  D. McDowell,et al.  A semi-implicit integration scheme for rate independent finite crystal plasticity , 2006 .

[8]  K. Shizawa,et al.  Multiscale crystal plasticity modeling based on geometrically necessary crystal defects and simulation on fine-graining for polycrystal , 2007 .

[9]  George T. Gray,et al.  Low-symmetry plastic deformation in BCC tantalum: experimental observations, modeling and simulations , 2003 .

[10]  S. Schoenfeld,et al.  Dynamic behaviour of polycrystalline tantalum , 1998 .

[11]  S. Mahesh A binary-tree based model for rate-independent polycrystals , 2010 .

[12]  Mark F. Horstemeyer,et al.  Multiscale modeling of the plasticity in an aluminum single crystal , 2009 .

[13]  J. Crépin,et al.  Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials , 2007 .

[14]  Zhichao Sun,et al.  A robust integration algorithm for implementing rate dependent crystal plasticity into explicit finite element method , 2008 .

[15]  U. F. Kocks,et al.  Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties , 1998 .

[16]  P. J. Maudlin,et al.  High–rate material modelling and validation using the Taylor cylinder impact test , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  Z. Zhuang,et al.  A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales , 2009 .

[18]  P. Franciosi,et al.  Multi-laminate plastic-strain organization for non-uniform TFA modeling of poly-crystal regularized plastic flow , 2008 .

[19]  I. Beyerlein,et al.  Plastic anisotropy in fcc single crystals in high rate deformation , 2009 .

[20]  Hussein M. Zbib,et al.  Dynamic shear banding: A three-dimensional analysis , 1992 .

[21]  J. Rice,et al.  Rate sensitivity of plastic flow and implications for yield-surface vertices , 1983 .

[22]  F. Dunne,et al.  Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys , 2007 .

[23]  John W. Cell,et al.  Stephen Timoshenko-60th Anniversary Volume , 1940 .

[24]  K. S. Havner,et al.  A discrete model for the prediction of subsequent yield surfaces in polycrystalline plasticity , 1971 .

[25]  J. C. Simo,et al.  Non‐smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms , 1988 .

[26]  S. Mahesh A hierarchical model for rate-dependent polycrystals , 2009 .

[27]  D. Piot,et al.  A method of generating analytical yield surfaces of crystalline materials , 1996 .

[28]  H. Zbib,et al.  Crystal plasticity: micro-shear banding in polycrystals using voronoi tessellation , 1998 .

[29]  P. J. Maudlin,et al.  An application of multisurface plasticity theory: Yield surfaces of textured materials , 1995 .

[30]  P. J. Maudlin,et al.  On the modeling of the Taylor cylinder impact test for orthotropic textured materials: experiments and simulations , 1999 .

[31]  W. T. Koiter Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface , 1953 .

[32]  Raul Radovitzky,et al.  An explicit formulation for multiscale modeling of bcc metals , 2008 .

[33]  G. Gray,et al.  Constitutive behavior of tantalum and tantalum-tungsten alloys , 1996 .

[34]  K. S. Havner,et al.  Finite Plastic Deformation of Crystalline Solids , 1992 .

[35]  W. Gambin Refined analysis of elastic-plastic crystals , 1992 .

[36]  R. Asaro,et al.  Micromechanics of Crystals and Polycrystals , 1983 .

[37]  Role of strain-rate sensitivity in the crystal plasticity of hexagonal structures , 2007 .

[38]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[39]  P. Houtte,et al.  Assessment of plastic heterogeneity in grain interaction models using crystal plasticity finite element method , 2010 .

[40]  E. Cerreta,et al.  Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions , 2007 .

[41]  A. Zaoui,et al.  Crystal hardening and the issue of uniqueness , 1989 .

[42]  K. S. Havner On unification, uniqueness and numerical analysis in plasticity , 1977 .

[43]  D. Fullwood,et al.  Computationally efficient database and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of face-centered cubic polycrystals , 2008 .

[44]  Dierk Raabe,et al.  Investigation of Three-Dimensional Aspects of Grain-Scale Plastic Surface Deformation of an Aluminum Oligocrystal , 2008 .

[45]  T. A. Mason,et al.  Deformation twinning in polycrystalline Zr: Insights from electron backscattered diffraction characterization , 2002 .

[46]  R. Asaro,et al.  Overview no. 42 Texture development and strain hardening in rate dependent polycrystals , 1985 .

[47]  P. Franciosi,et al.  Heterogeneous crystal and poly-crystal plasticity modeling from a transformation field analysis within a regularized Schmid law , 2007 .

[48]  L. Anand,et al.  A computational procedure for rate-independent crystal plasticity , 1996 .

[49]  N. Iwata,et al.  Characterization of yielding behavior of polycrystalline metals with single crystal plasticity based on representative characteristic length , 2010 .

[50]  T. A. Mason,et al.  An experimental and numerical study of the localization behavior of tantalum and stainless steel , 2006 .

[51]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[52]  L. Anand,et al.  Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[53]  Q. H. Zuo,et al.  Anisotropic Yield Surfaces Based on Elastic Projection Operators , 1995 .

[54]  F. Barlat,et al.  An effective computational algorithm for rate-independent crystal plasticity based on a single crystal yield surface with an application to tube hydroforming , 2007 .

[55]  M. V. Klassen-Neklyudova,et al.  Plasticity of Crystals , 2012 .

[56]  U. F. Kocks,et al.  A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable , 1988 .