Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem

A new framework of the functional analysis is developed for the finite element adaptive method (adaptivity) for the Tikhonov regularization functional for some ill-posed problems. As a result, the relaxation property for adaptive mesh refinements is established. An application to a multidimensional coefficient inverse problem for a hyperbolic equation is discussed. This problem arises in the inverse scattering of acoustic and electromagnetic waves. First, a globally convergent numerical method provides a good approximation for the correct solution of this problem. Next, this approximation is enhanced via the subsequent application of the adaptivity. Analytical results are verified computationally. Bibliography: 30 titles. Illustration: 2 figures.

[1]  Almerico Murli,et al.  Numerical Mathematics and Advanced Applications , 2003 .

[2]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[3]  Ekaterina Iakovleva,et al.  MUSIC-Type Electromagnetic Imaging of a Collection of Small Three-Dimensional Inclusions , 2007, SIAM J. Sci. Comput..

[4]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[5]  Michael V. Klibanov,et al.  Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D , 2010 .

[6]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[7]  Michael V. Klibanov,et al.  Inverse Problems and Carleman Estimates , 1992 .

[8]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[9]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[10]  Alemdar Hasanov Simultaneous determination of the source terms in a linear hyperbolic problem from the final overdetermination , 2008 .

[11]  Christian Clason,et al.  An Adaptive Hybrid FEM/FDM Method for an Inverse Scattering Problem in Scanning Acoustic Microscopy , 2006, SIAM J. Sci. Comput..

[12]  Barbara Kaltenbacher,et al.  Efficient computation of the Tikhonov regularization parameter by goal-oriented adaptive discretization , 2008 .

[13]  Michael V. Klibanov,et al.  Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem , 2010 .

[14]  Donald Estep,et al.  Calculus in several dimensions , 2004 .

[15]  Michael V. Klibanov,et al.  A Globally Convergent Numerical Method for a Coefficient Inverse Problem , 2008, SIAM J. Sci. Comput..

[16]  Michael V. Klibanov,et al.  Carleman estimates for coefficient inverse problems and numerical applications , 2004 .

[17]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[18]  Larisa Beilina,et al.  Hybrid FEM/FDM method for an inverse scattering problem , 2003 .

[19]  David K. Smith,et al.  Mathematical Programming: Theory and Algorithms , 1986 .

[20]  Peter Schlattmann,et al.  Theory and Algorithms , 2009 .

[21]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[22]  Wei Song,et al.  Finite-Element Method , 2012 .

[23]  Ronny Ramlau,et al.  A steepest descent algorithm for the global minimization of the Tikhonov functional , 2002 .

[24]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[25]  Krister Åhlander,et al.  Efficiency of a hybrid method for the wave equation , 2001 .

[26]  J. Tinsley Oden,et al.  A Posteriori Error Estimation , 2002 .

[27]  Krister Åhlander,et al.  A hybrid method for the wave equation , 2001 .

[28]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[29]  O. Ladyzhenskaya The Boundary Value Problems of Mathematical Physics , 1985 .

[30]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[31]  Michael V. Klibanov,et al.  Lipschitz stability of an inverse problem for an acoustic equation , 2006 .

[32]  Ronny Ramlau,et al.  TIGRA—an iterative algorithm for regularizing nonlinear ill-posed problems , 2003 .

[33]  A. Bakushinsky,et al.  Iterative Methods for Approximate Solution of Inverse Problems , 2005 .

[34]  Michael V. Klibanov,et al.  A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem , 2010 .

[35]  David Isaacson,et al.  Inverse problems for a perturbed dissipative half-space , 1995 .

[36]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .