Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem
暂无分享,去创建一个
Michael V. Klibanov | Larisa Beilina | M. Kokurin | L. Beilina | M. Klibanov | M. Yu. Kokurin | Ääêáëë Áäáaeae | Åááàààä | κ Ãäáááaeçî | Aeae Åáãààáä | ͺ Ãçãíêáae
[1] Almerico Murli,et al. Numerical Mathematics and Advanced Applications , 2003 .
[2] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[3] Ekaterina Iakovleva,et al. MUSIC-Type Electromagnetic Imaging of a Collection of Small Three-Dimensional Inclusions , 2007, SIAM J. Sci. Comput..
[4] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[5] Michael V. Klibanov,et al. Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D , 2010 .
[6] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[7] Michael V. Klibanov,et al. Inverse Problems and Carleman Estimates , 1992 .
[8] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[9] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[10] Alemdar Hasanov. Simultaneous determination of the source terms in a linear hyperbolic problem from the final overdetermination , 2008 .
[11] Christian Clason,et al. An Adaptive Hybrid FEM/FDM Method for an Inverse Scattering Problem in Scanning Acoustic Microscopy , 2006, SIAM J. Sci. Comput..
[12] Barbara Kaltenbacher,et al. Efficient computation of the Tikhonov regularization parameter by goal-oriented adaptive discretization , 2008 .
[13] Michael V. Klibanov,et al. Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem , 2010 .
[14] Donald Estep,et al. Calculus in several dimensions , 2004 .
[15] Michael V. Klibanov,et al. A Globally Convergent Numerical Method for a Coefficient Inverse Problem , 2008, SIAM J. Sci. Comput..
[16] Michael V. Klibanov,et al. Carleman estimates for coefficient inverse problems and numerical applications , 2004 .
[17] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[18] Larisa Beilina,et al. Hybrid FEM/FDM method for an inverse scattering problem , 2003 .
[19] David K. Smith,et al. Mathematical Programming: Theory and Algorithms , 1986 .
[20] Peter Schlattmann,et al. Theory and Algorithms , 2009 .
[21] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[22] Wei Song,et al. Finite-Element Method , 2012 .
[23] Ronny Ramlau,et al. A steepest descent algorithm for the global minimization of the Tikhonov functional , 2002 .
[24] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[25] Krister Åhlander,et al. Efficiency of a hybrid method for the wave equation , 2001 .
[26] J. Tinsley Oden,et al. A Posteriori Error Estimation , 2002 .
[27] Krister Åhlander,et al. A hybrid method for the wave equation , 2001 .
[28] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[29] O. Ladyzhenskaya. The Boundary Value Problems of Mathematical Physics , 1985 .
[30] R. D. Murphy,et al. Iterative solution of nonlinear equations , 1994 .
[31] Michael V. Klibanov,et al. Lipschitz stability of an inverse problem for an acoustic equation , 2006 .
[32] Ronny Ramlau,et al. TIGRA—an iterative algorithm for regularizing nonlinear ill-posed problems , 2003 .
[33] A. Bakushinsky,et al. Iterative Methods for Approximate Solution of Inverse Problems , 2005 .
[34] Michael V. Klibanov,et al. A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem , 2010 .
[35] David Isaacson,et al. Inverse problems for a perturbed dissipative half-space , 1995 .
[36] O. A. Ladyzhenskai︠a︡,et al. Linear and quasilinear elliptic equations , 1968 .