Tracking a few extreme singular values and vectors in signal processing

In various applications it is necessary to keep track of a low-rank approximation of a covariance matrix, R(t), slowly varying with time. It is convenient to track the left singular vectors associated with the largest singular values of the triangular factor, L(t), of its Cholesky factorization. These algorithms are referred to as square-root. The drawback of the eigenvalue decomposition (EVD) or the singular value decompositions (SVD) is usually the volume of the computations. Various numerical methods for carrying out this task are surveyed, and it is shown why this heavy computational burden is questionable in numerous situations and should be revised. Indeed, the complexity per eigenpair is generally a quadratic function of the problem size, but there exist faster algorithms with linear complexity. Finally, in order to make a choice among the large and fuzzy set of available techniques, comparisons based on computer simulations in a relevant signal processing context are made. >

[1]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[2]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[3]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[4]  King-Sun Fu,et al.  On the generalized Karhunen-Loeve expansion (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[5]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[6]  J. H. Wilkinson,et al.  The Calculation of Specified Eigenvectors by Inverse Iteration , 1971 .

[7]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[8]  C. Paige Bidiagonalization of Matrices and Solution of Linear Equations , 1974 .

[9]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[10]  R. C. Thompson The behavior of eigenvalues and singular values under perturbations of restricted rank , 1976 .

[11]  T. Ulrych,et al.  Time series modeling and maximum entropy , 1976 .

[12]  Gerald J. Bierman,et al.  Numerical comparison of kalman filter algorithms: Orbit determination case study , 1977, Autom..

[13]  R. Meidan A generalized Karhunen-Loève expansion , 1977 .

[14]  Norman L. Owsley,et al.  Adaptive data orthogonalization , 1978, ICASSP.

[15]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[16]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[17]  S. Haykin Nonlinear Methods of Spectral Analysis , 1980 .

[18]  C. Paige Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .

[19]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[20]  Thomas Kailath,et al.  Some alternatives in recursive estimation , 1980 .

[21]  V. Klema LINPACK user's guide , 1980 .

[22]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[23]  Franklin T. Luk,et al.  A Block Lanczos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix , 1981, TOMS.

[24]  T. Kailath,et al.  Least squares type algorithm for adaptive implementation of Pisarenko's harmonic retrieval method , 1982 .

[25]  B. Parlett,et al.  On estimating the largest eigenvalue with the Lanczos algorithm , 1982 .

[26]  Tony F. Chan,et al.  Algorithm 581: An Improved Algorithm for Computing the Singular Value Decomposition [F1] , 1982, TOMS.

[27]  G. Bienvenu,et al.  Optimality of high resolution array processing using the eigensystem approach , 1983 .

[28]  J. C. Samson,et al.  Pure states, polarized waves, and principal components in the spectra of multiple, geophysical time-series , 1983 .

[29]  M. Larimore Adaptation convergence of spectral estimation based on Pisarenko harmonic retrieval , 1983 .

[30]  Bede Liu,et al.  An iterative algorithm for locating the minimal eigenvector of a symmetric matrix , 1984, ICASSP.

[31]  Juha Karhunen,et al.  Adaptive algorithms for estimating eigenvectors of correlation type matrices , 1984, ICASSP.

[32]  E. Oja,et al.  On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix , 1985 .

[33]  Yu Hu,et al.  Adaptive methods for real time Pisarenko spectrum estimate , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[34]  Robert Schreiber,et al.  Implementation of adaptive array algorithms , 1986, IEEE Trans. Acoust. Speech Signal Process..

[35]  P. Dooren,et al.  Numerical aspects of different Kalman filter implementations , 1986 .

[36]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[37]  Tapan K. Sarkar,et al.  Adaptive spectral estimation by the conjugate gradient method , 1986, IEEE Trans. Acoust. Speech Signal Process..

[38]  Ilkka Karasalo,et al.  Estimating the covariance matrix by signal subspace averaging , 1986, IEEE Trans. Acoust. Speech Signal Process..

[39]  S. Thomas Alexander,et al.  Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.

[40]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[41]  P. Comon,et al.  An incomplete factorization algorithm for adaptive filtering , 1987 .

[42]  John M. Cioffi,et al.  Limited-precision effects in adaptive filtering , 1987 .

[43]  John M. Cioffi,et al.  A fast QR/Frequency-domain RLS adaptive filter , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[44]  Jar-Ferr Yang,et al.  Adaptive eigensubspace algorithms for direction or frequency estimation and tracking , 1988, IEEE Trans. Acoust. Speech Signal Process..

[45]  D. Fuhrmann An algorithm for subspace computation, with applications in signal processing , 1988 .

[46]  Daniel R. Fuhrmann Adaptive Music , 1988, Optics & Photonics.

[47]  Mostafa Kaveh,et al.  Focussing matrices for coherent signal-subspace processing , 1988, IEEE Trans. Acoust. Speech Signal Process..

[48]  Donald W. Tufts,et al.  Advances in principal component signal processing , 1989 .

[49]  Jean-Pierre Le Cadre Parametric methods for spatial signal processing in the presence of unknown colored noise fields , 1989, IEEE Trans. Acoust. Speech Signal Process..

[50]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[51]  P. Comon Fast Computation of a Restricted Subset of Eigenpairs of a Varying Hermitian Matrix , 1991 .