EXCLAIM: the EXperiment for Cryogenic Large-Aperture Intensity Mapping

The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) will constrain star formation over cosmic time by carrying out a blind and complete census of redshifted carbon monoxide (CO) and ionized carbon ([CII]) emission in cross-correlation with galaxy survey data in redshift windows from the present to z=3.5 with a fully cryogenic, balloon-borne telescope. EXCLAIM will carry out extragalactic and Galactic surveys in a conventional balloon flight planned for 2023. EXCLAIM will be the first instrument to deploy µ-Spec silicon integrated spectrometers with a spectral resolving power R=512 covering 420-540 GHz. We summarize the design, science goals, and status of EXCLAIM.

[1]  Peter A. R. Ade,et al.  Experiment for cryogenic large-aperture intensity mapping: instrument design , 2021, Journal of Astronomical Telescopes, Instruments, and Systems.

[2]  Edward J. Wollack,et al.  Superfluid liquid helium control for the primordial inflation polarization explorer balloon payload. , 2021, The Review of scientific instruments.

[3]  Rachel S. Somerville,et al.  Multitracer Cosmological Line Intensity Mapping Mock Light-cone Simulation , 2020, The Astrophysical Journal.

[4]  A. Myers,et al.  Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory , 2020, Physical Review D.

[5]  D. Marrone,et al.  An Intensity Mapping Detection of Aggregate CO Line Emission at 3 mm , 2020, The Astrophysical Journal.

[6]  P. Ade,et al.  The first flight of the OLIMPO experiment: instrument performance , 2020, Journal of Physics: Conference Series.

[7]  F. Walter,et al.  The ALMA Spectroscopic Survey in the HUDF: Constraining Cumulative CO Emission at 1 ≲ z ≲ 4 with Power Spectrum Analysis of ASPECS LP Data from 84 to 115 GHz , 2019, The Astrophysical Journal.

[8]  Edward J. Wollack,et al.  Sub-Kelvin cooling for two kilopixel bolometer arrays in the PIPER receiver. , 2019, The Review of scientific instruments.

[9]  Edward J. Wollack,et al.  Second-generation Micro-Spec: A compact spectrometer for far-infrared and submillimeter space missions , 2019, Acta Astronautica.

[10]  Yen-Ting Lin,et al.  Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.

[11]  Eric R. Switzer,et al.  Evidence for C ii diffuse line emission at redshift z ∼ 2.6 , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[12]  Charles M. Bradford,et al.  Astrophysics and Cosmology with Line-Intensity Mapping , 2019, 1903.04496.

[13]  Hamsa Padmanabhan,et al.  Constraining the evolution of [C ii] intensity through the end stages of reionization , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  D. Elbaz,et al.  The [C ii] emission as a molecular gas mass tracer in galaxies at low and high redshifts , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  Edward J. Wollack,et al.  Aerogel scattering filters for cosmic microwave background observations , 2018, Astronomical Telescopes + Instrumentation.

[16]  Mark J. Devlin,et al.  Design and characterization of a balloon-borne diffraction-limited submillimeter telescope platform for BLAST-TNG , 2018, Astronomical Telescopes + Instrumentation.

[17]  Ryuichi Fujimoto,et al.  Design and on-orbit operation of the soft x-ray spectrometer adiabatic demagnetization refrigerator on the Hitomi observatory , 2018, Journal of astronomical telescopes, instruments, and systems.

[18]  S. Ho,et al.  Search for C ii emission on cosmological scales at redshift Z ∼ 2.6 , 2017, 1707.06172.

[19]  J. Carlstrom,et al.  COPSS II: THE MOLECULAR GAS CONTENT OF TEN MILLION CUBIC MEGAPARSECS AT REDSHIFT z ∼ 3 , 2016, 1605.03971.

[20]  Edward J. Wollack,et al.  Design and Performance of A High Resolution μ-Spec : An Integrated Submillimeter Spectrometer , 2016 .

[21]  D. Hollenbach,et al.  EXTENDED CARBON LINE EMISSION IN THE GALAXY: SEARCHING FOR DARK MOLECULAR GAS ALONG THE G328 SIGHTLINE , 2015, 1508.04828.

[22]  Edward J. Wollack,et al.  μ-Spec : An Efficient Compact Integrated Spectrometer for Submillimeter Astrophysics , 2015 .

[23]  Asantha Cooray,et al.  PROSPECTS FOR DETECTING C II EMISSION DURING THE EPOCH OF REIONIZATION , 2014, 1410.4808.

[24]  Peter A. R. Ade,et al.  The Primordial Inflation Polarization Explorer (PIPER) , 2014, Astronomical Telescopes and Instrumentation.

[25]  Edward J. Wollack,et al.  Micro-Spec: an ultracompact, high-sensitivity spectrometer for far-infrared and submillimeter astronomy. , 2014, Applied optics.

[26]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[27]  Edward J. Wollack,et al.  Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths. , 2013, Applied optics.

[28]  Edward J. Wollack,et al.  THE ARCADE 2 INSTRUMENT , 2009, 0901.0546.

[29]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.

[30]  Roberto Gilmozzi,et al.  Ground-based and Airborne Telescopes VII , 2008 .

[31]  Giampaolo Pisano,et al.  A review of metal mesh filters , 2006, SPIE Astronomical Telescopes + Instrumentation.

[32]  Martin J. Rees,et al.  Spectral appearance of non-uniform gas at high z , 1979 .