Ad Hoc Table Retrieval using Semantic Similarity
暂无分享,去创建一个
[1] Daisy Zhe Wang,et al. WebTables: exploring the power of tables on the web , 2008, Proc. VLDB Endow..
[2] Krisztian Balog,et al. Design Patterns for Fusion-Based Object Retrieval , 2017, ECIR.
[3] Craig MacDonald,et al. Modelling User Preferences using Word Embeddings for Context-Aware Venue Recommendation , 2016, ArXiv.
[4] Jeffrey Pennington,et al. GloVe: Global Vectors for Word Representation , 2014, EMNLP.
[5] Eric Crestan,et al. Web-scale table census and classification , 2011, WSDM '11.
[6] Tie-Yan Liu,et al. Word-Entity Duet Representations for Document Ranking , 2017, SIGIR.
[7] Jayant Madhavan,et al. Structured Data on the Web , 2009, 2010 12th International Asia-Pacific Web Conference.
[8] Craig MacDonald,et al. On the usefulness of query features for learning to rank , 2012, CIKM.
[9] Heiko Paulheim,et al. RDF2Vec: RDF Graph Embeddings for Data Mining , 2016, SEMWEB.
[10] Po Hu,et al. Learning Continuous Word Embedding with Metadata for Question Retrieval in Community Question Answering , 2015, ACL.
[11] Karl Aberer,et al. Result selection and summarization for Web Table search , 2015, 2015 IEEE 31st International Conference on Data Engineering.
[12] Daisy Zhe Wang,et al. Uncovering the Relational Web , 2008, WebDB.
[13] Surajit Chaudhuri,et al. InfoGather: entity augmentation and attribute discovery by holistic matching with web tables , 2012, SIGMOD Conference.
[14] Doug Downey,et al. Methods for exploring and mining tables on Wikipedia , 2013, IDEA@KDD.
[15] Sunita Sarawagi,et al. Open-domain quantity queries on web tables: annotation, response, and consensus models , 2014, KDD.
[16] Alessandra Mileo,et al. Using linked data to mine RDF from wikipedia's tables , 2014, WSDM.
[17] Tao Qin,et al. LETOR: A benchmark collection for research on learning to rank for information retrieval , 2010, Information Retrieval.
[18] Wei Zhang,et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.
[19] Jayant Madhavan,et al. Applying WebTables in Practice , 2015, CIDR.
[20] Krisztian Balog,et al. Nordlys: A Toolkit for Entity-Oriented and Semantic Search , 2017, SIGIR.
[21] Michael Granitzer,et al. Towards Disambiguating Web Tables , 2013, SEMWEB.
[22] Mingzhe Wang,et al. LINE: Large-scale Information Network Embedding , 2015, WWW.
[23] Krisztian Balog,et al. EntiTables: Smart Assistance for Entity-Focused Tables , 2017, SIGIR.
[24] Meihui Zhang,et al. InfoGather+: semantic matching and annotation of numeric and time-varying attributes in web tables , 2013, SIGMOD '13.
[25] J. Fleiss. Measuring nominal scale agreement among many raters. , 1971 .
[26] Sunita Sarawagi,et al. Annotating and searching web tables using entities, types and relationships , 2010, Proc. VLDB Endow..
[27] Paolo Merialdo,et al. Knowledge Base Augmentation using Tabular Data , 2014, LDOW.
[28] Doug Downey,et al. TabEL: Entity Linking in Web Tables , 2015, SEMWEB.
[29] Bhaskar Mitra,et al. A Dual Embedding Space Model for Document Ranking , 2016, ArXiv.
[30] James P. Callan,et al. Combining document representations for known-item search , 2003, SIGIR.
[31] Marie-Francine Moens,et al. Monolingual and Cross-Lingual Information Retrieval Models Based on (Bilingual) Word Embeddings , 2015, SIGIR.
[32] Jeffrey Dean,et al. Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.
[33] Jayant Madhavan,et al. Recovering Semantics of Tables on the Web , 2011, Proc. VLDB Endow..
[34] James P. Callan,et al. Scientific Table Search Using Keyword Queries , 2017, ArXiv.
[35] Steven Skiena,et al. DeepWalk: online learning of social representations , 2014, KDD.
[36] Tie-Yan Liu. Learning to Rank for Information Retrieval , 2009, Found. Trends Inf. Retr..
[37] Fabrizio Silvestri,et al. Context- and Content-aware Embeddings for Query Rewriting in Sponsored Search , 2015, SIGIR.
[38] Jing Chen,et al. An Empirical Study of Learning to Rank for Entity Search , 2016, SIGIR.
[39] Heiko Paulheim,et al. The Mannheim Search Join Engine , 2015, J. Web Semant..
[40] Sunita Sarawagi,et al. Answering Table Queries on the Web using Column Keywords , 2012, Proc. VLDB Endow..
[41] Stephen Tyree,et al. Parallel boosted regression trees for web search ranking , 2011, WWW.
[42] Mandar Mitra,et al. Word Embedding based Generalized Language Model for Information Retrieval , 2015, SIGIR.
[43] Loredana Afanasiev,et al. Harnessing the Deep Web: Present and Future , 2009, CIDR.
[44] M. de Rijke,et al. Short Text Similarity with Word Embeddings , 2015, CIKM.
[45] M. de Rijke,et al. Query modeling for entity search based on terms, categories, and examples , 2011, TOIS.
[46] Zhengdong Lu,et al. Neural Enquirer: Learning to Query Tables in Natural Language , 2016, IEEE Data Eng. Bull..
[47] Oren Kurland,et al. Document Retrieval Using Entity-Based Language Models , 2016, SIGIR.
[48] Krisztian Balog,et al. DBpedia-Entity v2: A Test Collection for Entity Search , 2017, SIGIR.
[49] Alon Y. Halevy,et al. Data Integration for the Relational Web , 2009, Proc. VLDB Endow..
[50] Reynold Xin,et al. Finding related tables , 2012, SIGMOD Conference.
[51] Wolfgang Lehner,et al. Towards a Hybrid Imputation Approach Using Web Tables , 2015, 2015 IEEE/ACM 2nd International Symposium on Big Data Computing (BDC).