Coherent interference induced transparency in self-coupled optical waveguide-based resonators.

We propose a self-coupled optical waveguide (SCOW)-based resonator to generate an optical resonance analogous to electromagnetically induced transparency (EIT). The EIT-like effect is formed by the coherent interference between two resonance paths inherent to the SCOW resonator. For cascaded SCOW resonators, the spectrum they produce is significantly affected by the phase shift between them, with the EIT-like peak flattened or split as the two extreme cases. We also investigate the dispersion characteristics of an infinite array of SCOW resonators and show that the dispersion relation and group index in the EIT subband can be greatly changed by a small phase shift between the SCOW resonators.