Parallel single front genetic algorithm: performance analysis in a cluster system

In this paper a performance analysis in a cluster system of the parallel single front genetic algorithm (PSFGA) is carried out. The PSFGA is a parallel evolutionary optimizer for multiobjective problems that use a structured population in the form of a set of islands. The SFGA, an elitist evolutionary algorithm with a clearing procedure that uses a grid in the objective space for diversity maintaining purposes, is performed on each subpopulation (island) associated to a different area in the search space. Experimental results show that PSFGA outperforms SFGA and SPEA (strength Pareto evolutionary algorithm) in the cases studied.

[1]  Message P Forum,et al.  MPI: A Message-Passing Interface Standard , 1994 .

[2]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[3]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[4]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[5]  Sonia Mota,et al.  Multi-objective Optimization Evolutionary Algorithms Applied to Paroxysmal Atrial Fibrillation Diagnosis Based on the k-Nearest Neighbours Classifier , 2002, IBERAMIA.

[6]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[7]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[8]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[9]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[10]  Beat Kleiner,et al.  Graphical Methods for Data Analysis , 1983 .

[11]  F. de Toro,et al.  PSFGA: a parallel genetic algorithm for multiobjective optimization , 2002, Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing.

[12]  Eduardo Ros,et al.  Non-invasive Atrial Disease Diagnosis Using Decision Rules: A Multi-objective Optimization Approach , 2003, EMO.

[13]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[14]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[15]  Susana Cecilia Esquivel Evolutionary algorithms for solving multi-objetive problems . Carlos A. Coello Coello, David A. van Veldhuizen and Gary R., Lamont , 2002 .

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[17]  Geoffrey T. Parks,et al.  Selective Breeding in a Multiobjective Genetic Algorithm , 1998, PPSN.

[18]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.