High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory

Looking for solid state electrolytes with fast lithium ion conduction is an important prerequisite for developing all-solid-state lithium secondary batteries. By combining the simulation techniques in different levels of accuracy, e.g. the bond-valence (BV) method and the density functional theory (DFT), a high-throughput design and optimization scheme is proposed for searching fast lithium ion conductors as candidate solid state electrolytes for lithium rechargeable batteries. The screening from more than 1000 compounds is performed through BV-based method, and the ability to predict reliable tendency of the Li+ migration energy barriers is confirmed by comparing with the results from DFT calculations. β-Li3PS4 is taken as a model system to demonstrate the application of this combination method in optimizing properties of solid electrolytes. By employing the high-throughput DFT simulations to more than 200 structures of the doping derivatives of β-Li3PS4, the effects of doping on the ionic conductivities in this material are predicted by the BV calculations. The O-doping scheme is proposed as a promising way to improve the kinetic properties of this materials, and the validity of the optimization is proved by the first-principles molecular dynamics (FPMD) simulations.

[1]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[2]  Vladislav A. Blatov,et al.  Migration maps of Li+ cations in oxygen-containing compounds , 2008 .

[3]  A. Becke,et al.  A simple effective potential for exchange. , 2006, The Journal of chemical physics.

[4]  Anthony L. Spek,et al.  The determination of pore volumes, pore shapes and diffusion paths in microporous crystals , 2006 .

[5]  S. Adams,et al.  Crystal structure of a superionic conductor, Li7P3S11 , 2007 .

[6]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[7]  Liquan Chen,et al.  Density Functional Investigation on Li2MnO3 , 2012 .

[8]  Yue Qi,et al.  Defect Thermodynamics and Diffusion Mechanisms in Li2CO3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries , 2013 .

[9]  F. García-Alvarado,et al.  Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries : A new high-pressure form of LiMPO4 (M = Fe and Ni) , 2001 .

[10]  G. Will,et al.  The chemical bonding in lithium metaborate, LiBO2. Charge densities and electrostatic properties , 1983 .

[11]  Dong-Hwa Seo,et al.  First-principles study on lithium metal borate cathodes for lithium rechargeable batteries , 2011 .

[12]  Takeshi Kobayashi,et al.  Crystal structure and phase transitions of the lithium ionic conductor Li3PS4 , 2011 .

[13]  M. Holzapfel,et al.  Lithium-Ion Conductors of the System LiCo1−xFexO2, Preparation and Structural Investigation , 2001 .

[14]  P. Strobel,et al.  Crystallographic and magnetic structure of Li2MnO3 , 1988 .

[15]  S. Adams Relationship between bond valence and bond softness of alkali halides and chalcogenides. , 2001, Acta crystallographica. Section B, Structural science.

[16]  G. Redhammer,et al.  LiInSiO4: a new monovalent-trivalent olivine. , 2003, Acta crystallographica. Section C, Crystal structure communications.

[17]  Michael T. Hutchings,et al.  Investigation of thermally induced Li+ ion disorder in Li2O using neutron diffraction , 1991 .

[18]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[19]  R. P. Rao,et al.  Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. , 2009, Physical chemistry chemical physics : PCCP.

[20]  Toshihiro Kasuga,et al.  An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks , 2014 .

[21]  T. Eckl,et al.  Lithium diffusion in the spinel phase Li4Ti5O12 and in the rocksalt phase Li7Ti5O12 of lithium titanate from first principles , 2014 .

[22]  D. Murphy,et al.  The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4 , 1984 .

[23]  G. Blasse,et al.  Structure and Eu3+-fluorescence of lithium and sodium lanthanide silicates and germanates , 1967 .

[24]  Jean-Marie Tarascon,et al.  Marinite Li2M(SO4)2 (M = Co, Fe, Mn) and Li1Fe(SO4)2: model compounds for super-super-exchange magnetic interactions. , 2013, Inorganic chemistry.

[25]  G. Ceder,et al.  First principles study of Li diffusion in I-Li 2 NiO 2 structure , 2009 .

[26]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[27]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[28]  S. Adams,et al.  Pathway models for fast ion conductors by combination of bond valence and reverse Monte Carlo methods , 2002 .

[29]  C. Keffer,et al.  Crystal structure of twinned low-temperature lithium phosphate , 1967 .

[30]  D. Gryffroy,et al.  A Neutron Diffraction Study of some Spinel Compounds Containing Octahedral Ni and Mn at a 1:3 Ratio , 1991 .

[31]  M. Avdeev,et al.  Initial Assessment of an Empirical Potential as a Portable Tool for Rapid Investigation of Li+ Diffusion in Li+-Battery Cathode Materials , 2014 .

[32]  Yi Zhang,et al.  Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites , 2013 .

[33]  Christopher S. Johnson,et al.  Electrochemical and Structural Properties of xLi2M‘O3·(1−x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3) , 2004 .

[34]  J. Pluth,et al.  Crystal structure of synthetic LiScSiO4olivine and comparison with isotypic Mg2SiO4 , 1978 .

[35]  N. Holzwarth,et al.  Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles , 2013 .

[36]  Liquan Chen,et al.  Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective , 2013 .

[37]  M. Nakayama,et al.  Lithium ion conduction in tavorite-type LiMXO4F (M–X: AlP, MgS) candidate solid electrolyte materials , 2014 .

[38]  J. Tarascon,et al.  Lithium Migration Pathways and van der Waals Effects in the LiFeSO4OH Battery Material , 2014 .

[39]  T. Bredow,et al.  Theoretical analysis of structural, energetic, electronic, and defect properties of Li2O. , 2006, The journal of physical chemistry. B.

[40]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[41]  M. Nakayama,et al.  Electronic structure of spinel-type LiNi1/2Ge3/2O4 and LiNi1/2Mn3/2O4 as positive electrodes for rechargeable Li-ion batteries studied by first-principles density functional theory , 2014 .

[42]  P. Heitjans,et al.  Formation and Mobility of Li Point Defects in LiBO2: A First-Principles Investigation , 2011 .

[43]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[44]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[45]  J. Dahn,et al.  Structure and Electrochemistry of Layered Li [ Cr x Li ( 1 / 3 − x / 3 ) Mn ( 2 / 3 − 2x / 3 ) ] O 2 , 2002 .

[46]  Anubhav Jain,et al.  Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing , 2011 .

[47]  J. Tarascon,et al.  High voltage sulphate cathodes Li2M(SO4)2 (M = Fe, Mn, Co): Atomic-scale studies of lithium diffusion, surfaces and voltage trends , 2014 .

[48]  N. Holzwarth,et al.  Mechanisms ofLi+diffusion in crystallineγ- andβ−Li3PO4electrolytes from first principles , 2007 .

[49]  I. Brown Influence of Chemical and Spatial Constraints on the Structures of Inorganic Compounds , 1997 .

[50]  Norihito Kijima,et al.  Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure , 2009 .

[51]  S. J. Kim,et al.  Synthesis and single-crystal structure of a lithium aluminogermanate with the zeolite ABW topology , 2000 .

[52]  I. D. Brown,et al.  INORGANIC CRYSTAL STRUCTURE DATABASE , 1981 .

[53]  J. Tarascon,et al.  Magnetic Structure and Properties of the Li-Ion Battery Materials FeSO4F and LiFeSO4F , 2011 .

[54]  Kyeongjae Cho,et al.  Behavior of Li defects in solid electrolyte lithium thiophosphate Li7P3S11: A first principles study , 2014 .

[55]  Gerbrand Ceder,et al.  Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research , 2006 .

[56]  Aron Walsh,et al.  A first-principles investigation , 2011 .

[57]  Liquan Chen,et al.  Atomic insight into electrochemical inactivity of lithium chromate (LiCrO2): Irreversible migration of chromium into lithium layers in surface regions , 2015 .

[58]  Y. Idemoto,et al.  Crystal structure of (LixK1-x)2Co3 (x = 0, 0.43, 0.5, 0.62, 1) by neutron powder diffraction analysis , 1998 .

[59]  C. Ceriani,et al.  The role of extra-framework cations on the structure of dehydrated Li-ABW. A computer simulation study , 2003 .

[60]  L. Daemen,et al.  Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.

[61]  J. Dahn,et al.  Structure Determination of Lixtis2 by Neutron-Diffraction , 1980 .

[62]  A. Yamada,et al.  Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system , 2004 .

[63]  M. Tachez,et al.  Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4 , 1984 .

[64]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[65]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[66]  Josh Thomas,et al.  A neutron diffraction study of Ni substituted LiMn2O4 , 1998 .

[67]  Stefan Adams,et al.  High power lithium ion battery materials by computational design , 2011 .

[68]  Christian Masquelier,et al.  Magnetic Structures of the Triphylite LiFePO4 and of Its Delithiated Form FePO4 , 2003 .

[69]  R. Mercier,et al.  Structure du tetrathiophosphate de lithium , 1982 .

[70]  L. Nazar,et al.  Alkali-ion Conduction Paths in LiFeSO4F and NaFeSO4F Tavorite-Type Cathode Materials , 2011 .

[71]  C. Delmas,et al.  On the structure of Li3Ti2(PO4)3 , 2002 .

[72]  Liquan Chen,et al.  Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method , 2014 .

[73]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[74]  F. Kubel Crystal structure of lithium cobalt double orthophosphate, LiCoPO4 , 1994 .

[75]  Dominique Guyomard,et al.  LiMBO3 (M=Mn, Fe, Co):: synthesis, crystal structure and lithium deinsertion/insertion properties , 2001 .

[76]  N. Thomas Characterization of voids in crystalline materials: application to oxide ceramic systems , 1991 .

[77]  C. Ouyang,et al.  Strain tuned Li diffusion in LiCoO2 material for Li ion batteries: A first principles study , 2014 .

[78]  M. Nakayama,et al.  First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure. , 2012, Physical chemistry chemical physics : PCCP.

[79]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[80]  Lijuan Song,et al.  Electrical and lithium ion dynamics in Li2IrO3 from density functional theory study , 2014 .

[81]  Jean-Marie Tarascon,et al.  Li2Fe(SO4)2 as a 3.83 V positive electrode material , 2012 .

[82]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[83]  Alexander Kuhn,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[84]  Ferdinando Bosi,et al.  Bond valence at mixed occupancy sites. I. Regular polyhedra. , 2014, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[85]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[86]  J. Gopalakrishnan,et al.  Synthesis, crystal structure and lithium ion conductivity of LiMgFSO4 , 2002 .

[87]  J. Majling,et al.  Crystal structure of lithium magnesium phosphate, LiMgPO4: Crystal chemistry of the olivine-type compounds , 1982 .

[88]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[89]  Lijuan Song,et al.  Electrical and Lithium Ion Dynamics in Three Main Components of Solid Electrolyte Interphase from Density Functional Theory Study , 2011 .

[90]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[91]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[92]  S. Kondo,et al.  Lithium ion conductive oxysulfide, Li3PO4–Li3PS4 , 2005 .

[93]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[94]  Stefan Adams,et al.  From bond valence maps to energy landscapes for mobile ions in ion-conducting solids , 2006 .

[95]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[96]  H. Verweij,et al.  Structure and properties of ordered Li2IrO3 and Li2PtO3 , 2008 .

[97]  Nancy J. Dudney,et al.  Thin Film Micro-Batteries , 2008 .

[98]  Eckhard Karden,et al.  Energy storage devices for future hybrid electric vehicles , 2007 .

[99]  M. Touboul,et al.  Structure du germanate d`indium et de lithium , 1987 .

[100]  S. Adams,et al.  Comparison of ion sites and diffusion paths in glasses obtained by molecular dynamics simulations and bond valence analysis , 2006, cond-mat/0607523.

[101]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .

[102]  Graeme Henkelman,et al.  A generalized solid-state nudged elastic band method. , 2012, The Journal of chemical physics.