A simple tensor network algorithm for two-dimensional steady states

Understanding dissipation in 2D quantum many-body systems is an open challenge which has proven remarkably difficult. Here we show how numerical simulations for this problem are possible by means of a tensor network algorithm that approximates steady states of 2D quantum lattice dissipative systems in the thermodynamic limit. Our method is based on the intuition that strong dissipation kills quantum entanglement before it gets too large to handle. We test its validity by simulating a dissipative quantum Ising model, relevant for dissipative systems of interacting Rydberg atoms, and benchmark our simulations with a variational algorithm based on product and correlated states. Our results support the existence of a first order transition in this model, with no bistable region. We also simulate a dissipative spin 1/2 XYZ model, showing that there is no re-entrance of the ferromagnetic phase. Our method enables the computation of steady states in 2D quantum lattice systems.Our understanding of open quantum many-body systems is limited because it is difficult to perform a theoretical treatment of both quantum and dissipative effects in large systems. Here the authors present a tensor network method that can find the steady state of 2D driven-dissipative many-body models.

[1]  A. Gorshkov,et al.  Nonequilibrium many-body steady states via Keldysh formalism. , 2015, Physical review. B.

[2]  J. P. Garrahan,et al.  Universal nonequilibrium properties of dissipative Rydberg gases. , 2014, Physical review letters.

[3]  D. Petrosyan,et al.  Steady-state crystallization of Rydberg excitations in an optically driven lattice gas , 2012, 1208.2911.

[4]  Hoang Duong Tuan,et al.  Infinite projected entangled pair states algorithm improved: Fast full update and gauge fixing , 2015, 1503.05345.

[5]  Roman Orus,et al.  Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems , 2011, 1112.4101.

[6]  H. Weimer Variational principle for steady states of dissipative quantum many-body systems. , 2014, Physical review letters.

[7]  G Vidal Classical simulation of infinite-size quantum lattice systems in one spatial dimension. , 2007, Physical review letters.

[8]  Z. Y. Xie,et al.  Coarse-graining renormalization by higher-order singular value decomposition , 2012, 1201.1144.

[9]  Iztok Pižorn One-dimensional Bose-Hubbard model far from equilibrium , 2013, 1308.3195.

[10]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[11]  H. Weimer Variational analysis of driven-dissipative Rydberg gases , 2015, 1501.07284.

[12]  Piotr Czarnik,et al.  Variational approach to projected entangled pair states at finite temperature , 2015, 1503.01077.

[13]  J. Eisert Entanglement and tensor network states , 2013, 1308.3318.

[14]  Z. Y. Xie,et al.  Renormalization of tensor-network states , 2010, 1002.1405.

[15]  Eduardo Mascarenhas,et al.  Matrix-product-operator approach to the nonequilibrium steady state of driven-dissipative quantum arrays , 2015, 1504.06127.

[16]  Z. Y. Xie,et al.  Second renormalization of tensor-network states. , 2008, Physical review letters.

[17]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[18]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[19]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[20]  R. Baxter,et al.  Corner transfer matrices , 1981 .

[21]  R. Baxter,et al.  Dimers on a Rectangular Lattice , 1968 .

[22]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[23]  A. Kirk Nuclear fusion: bringing a star down to Earth , 2015, 1503.08981.

[24]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[25]  F. Verstraete,et al.  Renormalization and tensor product states in spin chains and lattices , 2009, 0910.1130.

[26]  J. Cirac,et al.  Variational Matrix Product Operators for the Steady State of Dissipative Quantum Systems. , 2015, Physical review letters.

[27]  M. Fleischhauer,et al.  Bistability Versus Metastability in Driven Dissipative Rydberg Gases , 2016, 1611.00627.

[28]  A Monte Carlo Time-Dependent Variational Principle , 2014, 1411.5546.

[29]  T. Xiang,et al.  Accurate determination of tensor network state of quantum lattice models in two dimensions. , 2008, Physical review letters.

[30]  R. Orús,et al.  Entanglement continuous unitary transformations , 2016, 1607.04645.

[31]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[32]  Ying-Jer Kao,et al.  Steady States of Infinite-Size Dissipative Quantum Chains via Imaginary Time Evolution. , 2017, Physical review letters.

[33]  J. Ignacio Cirac,et al.  Purifications of multipartite states: limitations and constructive methods , 2013, 1308.1914.

[34]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[35]  Philippe Corboz,et al.  Variational optimization with infinite projected entangled-pair states , 2016, 1605.03006.

[36]  N. Schuch Condensed Matter Applications of Entanglement Theory , 2013, 1306.5551.

[37]  M. Rams,et al.  Variational tensor network renormalization in imaginary time: Benchmark results in the Hubbard model at finite temperature , 2016, 1607.04016.

[38]  R. Fazio,et al.  Dissipative topological superconductors in number-conserving systems , 2015, 1512.04413.

[39]  Tomotoshi Nishino,et al.  Corner Transfer Matrix Algorithm for Classical Renormalization Group , 1997 .

[40]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[41]  Ronnie Kosloff,et al.  Quantum Thermodynamics: A Dynamical Viewpoint , 2013, Entropy.

[42]  A. H. Werner,et al.  Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems. , 2014, Physical review letters.

[43]  M. Fleischhauer,et al.  Antiferromagnetic long-range order in dissipative Rydberg lattices , 2014, 1404.1281.

[44]  Johann A. Bengua,et al.  The iPEPS algorithm, improved: fast full update and gauge fixing , 2015, 1503.05345.

[45]  David Pérez-García,et al.  Area law for fixed points of rapidly mixing dissipative quantum systems , 2015, ArXiv.

[46]  Tony E. Lee,et al.  Antiferromagnetic phase transition in a nonequilibrium lattice of Rydberg atoms , 2011, 1104.0908.

[47]  Roman Orus,et al.  Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction , 2009, 0905.3225.

[48]  J I Cirac,et al.  Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. , 2008, Physical review letters.

[49]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[50]  T. Nishino,et al.  Corner Transfer Matrix Renormalization Group Method , 1995, cond-mat/9507087.

[51]  R. Baxter Variational approximations for square lattice models in statistical mechanics , 1978 .

[52]  Rosario Fazio,et al.  Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems , 2016, 1602.06553.

[53]  E. Arimondo,et al.  Full counting statistics and phase diagram of a dissipative Rydberg gas. , 2013, Physical review letters.

[54]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[55]  C. Ciuti,et al.  Critical behavior of dissipative two-dimensional spin lattices , 2016, 1609.02848.

[56]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[57]  T. Cubitt,et al.  Rapid mixing and stability of quantum dissipative systems , 2014, 1409.7809.

[58]  P. Zoller,et al.  Topology by dissipation in atomic quantum wires , 2011, 1105.5947.

[59]  E. Solano,et al.  Beyond mean-field bistability in driven-dissipative lattices: bunching-antibunching transition and quantum simulation , 2015, 1510.06651.

[60]  Frank Verstraete,et al.  Gradient methods for variational optimization of projected entangled-pair states , 2016, 1606.09170.

[61]  I. McCulloch Infinite size density matrix renormalization group, revisited , 2008, 0804.2509.

[62]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[63]  Michael Zwolak,et al.  Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. , 2004, Physical review letters.

[64]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[65]  G. Vidal,et al.  Infinite time-evolving block decimation algorithm beyond unitary evolution , 2008 .

[66]  M. Bousquet-Mélou,et al.  Exactly Solved Models , 2009 .

[67]  G. Evenbly,et al.  Tensor Network Renormalization. , 2014, Physical review letters.