Tracing secondary equilibrium paths of elastic framed structures

For a framed structure that is subjected to bifurcation buckling, it may be useful to trace its secondary equilibrium path to gauge its sensitivity to geometric imperfections or to study the nature of load shedding from the buckled structure. For this purpose, a substantial number of branch-switching algorithms for tracing the secondary equilibrium paths of elastic structures have been proposed in the literature. However, virtually all of the published algorithms have heavy mathematical overtones that are not readily appreciated by practicing structural engineers. This paper presents a simple and efficient branch-switching algorithm that is explained in more easily understood terms. The proposed algorithm is demonstrated through numerical examples to be effective in tracing the secondary equilibrium paths of various framed structures with different types of postbuckling behaviors.

[1]  M. J. Clarke,et al.  A study of incremental-iterative strategies for non-linear analyses , 1990 .

[2]  G. Powell,et al.  Improved iteration strategy for nonlinear structures , 1981 .

[3]  Alexander Chajes,et al.  Post‐Buckling Behavior , 1983 .

[4]  D. Allman On the general theory of the stability of equilibrium of discrete conservative systems , 1989, The Aeronautical Journal (1968).

[5]  B. Widjaja,et al.  Path-following technique based on residual energy suppression for nonlinear finite element analysis , 1998 .

[6]  Peter Wriggers,et al.  A simple method for the calculation of postcritical branches , 1988 .

[7]  Martti Mikkola,et al.  Tracing the Equilibrium Path beyond Compound Critical Points , 1999 .

[8]  Richard E. McConnel,et al.  Collapse of Shallow Lattice Domes , 1987 .

[9]  M. A. Crisfield,et al.  A simple indicator and branch switching technique for hidden unstable equilibrium paths , 1992 .

[10]  David Murray,et al.  An incremental solution technique for unstable equilibrium paths of shell structures , 1995 .

[11]  Reza Abbasnia,et al.  Large Deformation Analysis of Elastic Space Frames , 1991 .

[12]  S. Remseth,et al.  Nonlinear static and dynamic analysis of framed structures , 1979 .

[13]  George E. Blandford,et al.  Work-increment-control method for non-linear analysis , 1993 .

[14]  Peter Wriggers,et al.  A general procedure for the direct computation of turning and bifurcation points , 1990 .

[15]  Manolis Papadrakakis,et al.  Conjugate gradient algorithms in nonlinear structural analysis problems , 1986 .

[16]  T. J. Healey,et al.  Snap‐Through and Bifurcation in a Simple Structure , 1985 .

[17]  K. K. Choong,et al.  Branch Switching in Bifurcation of Structures , 1992 .

[18]  Eugenio Oñate,et al.  A critical displacement approach for predicting structural instability , 1996 .

[19]  J. L. Meek,et al.  Geometrically Non-linear Behaviour of Space Frame Structures , 1987 .

[20]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[21]  Z. Bažant,et al.  Initial Postcritical Analysis of Asymmetric Bifurcation in Frames , 1989 .

[22]  Thomas See,et al.  Large Displacement Elastic Buckling of Space Structures , 1986 .

[23]  P. Bergan,et al.  Solution techniques for non−linear finite element problems , 1978 .

[24]  Fumio Fujii,et al.  PINPOINTING BIFURCATION POINTS AND BRANCH-SWITCHING , 1997 .

[25]  Fumio Nishino,et al.  Influential Mode of Imperfection on Carrying Capacity of Structures , 1989 .

[26]  Donald W. White,et al.  Automated solution procedures for negotiating abrupt non‐linearities and branch points , 1997 .

[27]  Anders Eriksson,et al.  On linear constraints for Newton–Raphson corrections and critical point searches in structural F.E. problems , 1989 .

[28]  M. J. Clarke,et al.  Co-rotational and Lagrangian formulations for elastic three-dimensional beam finite elements , 1998 .

[29]  W. Rheinboldt Numerical analysis of continuation methods for nonlinear structural problems , 1981 .

[30]  M. A. Crisfield,et al.  Solution strategies and softening materials , 1988 .

[31]  E. Riks The Application of Newton's Method to the Problem of Elastic Stability , 1972 .

[32]  Masahisa Fujikake,et al.  A simple approach to bifurcation and limit point calculations , 1985 .

[33]  Siu-Lai Chan Geometric and material non‐linear analysis of beam‐columns and frames using the minimum residual displacement method , 1988 .

[34]  Z. Waszczyszyn Numerical problems of nonlinear stability analysis of elastic structures , 1983 .

[35]  F. W. Williams,et al.  AN APPROACH TO THE NON-LINEAR BEHAVIOUR OF THE MEMBERS OF A RIGID JOINTED PLANE FRAMEWORK WITH FINITE DEFLECTIONS , 1964 .

[36]  K. K. Choong,et al.  Review on methods of bifurcation analysis for geometrically nonlinear structures , 1993 .

[37]  M. J. Clarke,et al.  Symmetry of Tangent Stiffness Matrices of 3D Elastic Frame , 2000 .

[38]  Giles W Hunt,et al.  A general theory of elastic stability , 1973 .

[39]  R. Seydel Numerical computation of branch points in nonlinear equations , 1979 .

[40]  John Roorda,et al.  Stability of Structures with Small Imperfections , 1965 .

[41]  J. V. Huddleston Finite Deflections and Snap-Through of High Circular Arches , 1968 .

[42]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[43]  Markku Tuomala,et al.  Static and dynamic analysis of space frames using simple Timoshenko type elements , 1993 .

[44]  M. Crisfield,et al.  A semi-direct approach for the computation of singular points , 1994 .

[45]  P. Stehlin,et al.  Postbuckling analysis using a general purpose code , 1986 .