Aerodynamic Simulation of Vertical-Axis Wind Turbines

Full-scale, 3D, time-dependent aerodynamics modeling and simulation of a Darrieus-type vertical-axis wind turbine (VAWT) is presented. The simulations are performed using a moving-domain finite-element-based ALE-VMS technique augmented with a sliding-interface formulation to handle the rotor-stator interactions present. We simulate a single VAWT using a sequence of meshes with increased resolution to assess the computational requirements for this class of problems. The computational results are in good agreement with experimental data. We also perform a computation of two side-by-side counterrotating VAWTs to illustrate how the ALE-VMS technique may be used for the simulation of multiple turbines placed in arrays.

[1]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[2]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[3]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[4]  Samir Ziada,et al.  Computational fluid dynamics simulation of the aerodynamics of a high solidity, small‐scale vertical axis wind turbine , 2012 .

[5]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[6]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[7]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[8]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[9]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[10]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[11]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[12]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[13]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[14]  Marek Behr,et al.  The Shear-Slip Mesh Update Method , 1999 .

[15]  Tayfun E. Tezduyar,et al.  Shear-Slip Mesh Update in 3D Computation of Complex Flow Problems with Rotating Mechanical Components , 2001 .

[16]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[17]  Richard E. Brown,et al.  Simulating the aerodynamic performance and wake dynamics of a vertical‐axis wind turbine , 2011 .

[18]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[19]  Erich Hau,et al.  Wind Turbines: Fundamentals, Technologies, Application, Economics , 1999 .

[20]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[21]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[22]  John O. Dabiri Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays , 2010 .

[23]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[24]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[25]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Special methods and enhanced solution techniques , 2007 .

[26]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[27]  Yuri Bazilevs,et al.  Operator- and template-based modeling of solid geometry for Isogeometric Analysis with application to Vertical Axis Wind Turbine simulation , 2012 .

[28]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[29]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[30]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[31]  Tayfun E. Tezduyar,et al.  Modeling of Fluid-Structure Interactions with the Space-Time Techniques , 2006 .

[32]  P. Klimas Darrieus rotor aerodynamics , 1982 .

[33]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[34]  Yuri Bazilevs,et al.  High-performance computing of wind turbine aerodynamics using isogeometric analysis , 2011 .

[35]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[36]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[37]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[38]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[39]  Frank Scheurich,et al.  Modelling the aerodynamics of vertical-axis wind turbines , 2011 .

[40]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[41]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[42]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .