How Recent Advances in Biology of Waldenström’s Macroglobulinemia May Affect Therapy Strategy

[1]  M. Béné,et al.  Bendamustine plus rituximab in newly‐diagnosed Waldenström macroglobulinaemia patients. A study on behalf of the French Innovative Leukaemia Organization (FILO) , 2018, British journal of haematology.

[2]  S. Treon,et al.  TP53 mutations are associated with mutated MYD88 and CXCR4, and confer an adverse outcome in Waldenström macroglobulinaemia , 2017, British journal of haematology.

[3]  X. Leleu,et al.  Working Toward a Genomic Prognostic Classification of Waldenström Macroglobulinemia: C-X-C Chemokine Receptor Type 4 Mutation and Beyond. , 2018, Hematology/oncology clinics of North America.

[4]  S. Treon,et al.  Ibrutinib Monotherapy in Symptomatic, Treatment-Naïve Patients With Waldenström Macroglobulinemia. , 2018, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  M. Dimopoulos,et al.  Phase 3 Trial of Ibrutinib plus Rituximab in Waldenström's Macroglobulinemia , 2018, The New England journal of medicine.

[6]  V. Leblond,et al.  How we manage patients with Waldenström macroglobulinaemia , 2018, British journal of haematology.

[7]  T. Habermann,et al.  Bendamustine and rituximab (BR) versus dexamethasone, rituximab, and cyclophosphamide (DRC) in patients with Waldenström macroglobulinemia , 2018, Annals of hematology.

[8]  S. Treon,et al.  MYD88 wild‐type Waldenstrom Macroglobulinaemia: differential diagnosis, risk of histological transformation, and overall survival , 2018, British journal of haematology.

[9]  Alese E. Halvorson,et al.  MYD88 mutation status does not impact overall survival in Waldenström macroglobulinemia , 2018, American journal of hematology.

[10]  D. Lane,et al.  Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others , 2018, Nature Reviews Clinical Oncology.

[11]  M. Cazzola,et al.  Pattern of somatic mutations in patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance , 2017, Haematologica.

[12]  B. Quesnel,et al.  TP53 Mutation and Its Prognostic Significance in Waldenstrom's Macroglobulinemia , 2017, Clinical Cancer Research.

[13]  M. Amiot,et al.  p53 dysregulation in B-cell malignancies: More than a single gene in the pathway to hell. , 2017, Blood reviews.

[14]  N. Gray,et al.  Targeting Myddosome Assembly in Waldenstrom Macroglobulinaemia , 2017, British journal of haematology.

[15]  M. Dimopoulos,et al.  Ibrutinib for patients with rituximab-refractory Waldenström's macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. , 2017, The Lancet. Oncology.

[16]  H. Rammensee,et al.  HLA class I-restricted MYD88 L265P-derived peptides as specific targets for lymphoma immunotherapy , 2016, Oncoimmunology.

[17]  B. Beutler,et al.  Inhibiting TLR9 and other UNC93B1-dependent TLRs paradoxically increases accumulation of MYD88L265P plasmablasts in vivo. , 2016, Blood.

[18]  R. Advani,et al.  Treatment recommendations from the Eighth International Workshop on Waldenström's Macroglobulinemia. , 2016, Blood.

[19]  S. Treon,et al.  Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia. , 2016, Blood.

[20]  Wei Zhang,et al.  HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. , 2016, Blood.

[21]  L. Rassenti,et al.  Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway , 2015, Oncotarget.

[22]  P. Cohen,et al.  Targeting IRAK1/IRAK4 Signaling in Waldenstrom's Macroglobulinemia , 2015 .

[23]  W. Vainchenker,et al.  Targeting Acute Myeloid Leukemia with a New CXCR4 Antagonist IgG1 Antibody (PF-06747143)in NOD/SCID Mice , 2015 .

[24]  Wei Wang,et al.  Risk-adapted therapy for early-stage extranodal nasal-type NK/T-cell lymphoma: analysis from a multicenter study. , 2015, Blood.

[25]  S. Treon,et al.  MYD88 Mutations and Response to Ibrutinib in Waldenström's Macroglobulinemia. , 2015, The New England journal of medicine.

[26]  R. Advani,et al.  Ibrutinib in previously treated Waldenström's macroglobulinemia. , 2015, The New England journal of medicine.

[27]  K. Stamatopoulos,et al.  Genetics and Prognostication in Splenic Marginal Zone Lymphoma: Revelations from Deep Sequencing , 2015, Clinical Cancer Research.

[28]  Thomas E. Hughes,et al.  Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. , 2015, The Lancet. Oncology.

[29]  B. Quesnel,et al.  Genomic Landscape of CXCR4 Mutations in Waldenström Macroglobulinemia , 2014, Clinical Cancer Research.

[30]  P. Richardson,et al.  Phase Ib Study of the Novel Anti-CXCR4 Antibody Ulocuplumab (BMS-936564) in Combination with Lenalidomide Plus Low-Dose Dexamethasone, or with Bortezomib plus Dexamethasone in Subjects with Relapsed or Refractory Multiple Myeloma , 2014 .

[31]  T. Sullivan,et al.  Novel Approach to the Potential Treatment of Patients with B-Cell Lymphomas Harboring the MYD88 L265P Mutation: Combination Treatment with TLR Antagonist and Rituximab , 2014 .

[32]  Irene M. Ghobrial,et al.  How I treat smoldering multiple myeloma. , 2014, Blood.

[33]  Jianyong Li,et al.  Prognostic value and efficacy evaluation of novel drugs for cytogenetic aberrations in multiple myeloma: a meta-analysis. , 2014, International journal of clinical and experimental medicine.

[34]  A. Roccaro,et al.  C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. , 2014, Blood.

[35]  S. Rodig,et al.  The WHIM-like CXCR4S338X somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia , 2014, Leukemia.

[36]  S. Treon,et al.  Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. , 2014, Blood.

[37]  S. Treon,et al.  The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. , 2014, Blood.

[38]  N. Gray,et al.  A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. , 2013, Blood.

[39]  S. Chevret,et al.  Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenström's macroglobulinemia , 2013, Haematologica.

[40]  N. Munshi,et al.  MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. , 2013, Blood.

[41]  R. Foà,et al.  Identification of molecular and functional patterns of p53 alterations in chronic lymphocytic leukemia patients in different phases of the disease , 2013, Haematologica.

[42]  B. Quesnel,et al.  MYD88 L265P mutation in Waldenstrom macroglobulinemia. , 2012, Blood.

[43]  N. Harris,et al.  MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. , 2012, The New England journal of medicine.

[44]  Timothy C Greiner,et al.  Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. , 2012, Blood.

[45]  Joseph M. Connors,et al.  Oncogenically active MYD88 mutations in human lymphoma , 2011, Nature.

[46]  A. Roccaro,et al.  SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. , 2008, Blood.

[47]  J. Miguel,et al.  Gene expression profiling of B lymphocytes and plasma cells from Waldenström's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals , 2007, Leukemia.

[48]  R. Gorlin,et al.  Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease , 2003, Nature Genetics.